: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

3.3V, PCI Express® 1-lane, 2:1 Mux/DeMux Switch

Features

- 2 Differential Channel, 2:1 Mux/DeMux
- PCI Express® 2.0 Performance, 5.0 Gbps
- Pinout optimized for placement between two PCIe slots
- Bi-directional operation
- Low Bit-to-Bit Skew, 5ps max
- Low Crosstalk: -26dB@5 GHz
- Low Off Isolation: -20dB@5 GHz
- V_{DD} Operating Range: +3.3V
- ESD Tolerance: 2 kV HBM
- Packaging (Pb-free \& Green):
- 28 contact TQFN (ZH)

Description

Pericom Semiconductor's PI3PCIE2215 is a 4 to 2 differential channel multiplexer/demultiplexer switch. The PI3PCIE family of switch solutions is fully compliant with PCIe® signals at 5.0 Gbps . Due to its low bit-to-bit skew, high channel-to-channel noise isolation and high bandwidth, this product is ideal for PCI Express switching.

Application

Switch a PCI Express® lane output between two PCI Express lane inputs

Block Diagram

Truth Table

Function	SEL
xIy to xOay	L
xIy to xOby	H

Pin Description (Top-side view)

Signal Descriptions

Pin Number	Pin Name	Type	Description
1	$\begin{array}{\|l} \text { AI+ } \\ \text { AI- } \end{array}$	Differential input	Differential input pair from PCIE signal source. Signal is passed through to the $\mathrm{AOa}+$, AO - pin respectively when $\mathrm{SEL}=0$. Signal is passed through to the $\mathrm{AOb}+, \mathrm{AOb}-$ pin respectively when $\mathrm{SEL}=1$.
$\begin{aligned} & \hline 23 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{AO}+\mathrm{+} \\ & \mathrm{AOa}- \end{aligned}$	Differential pass-through input	Differential analog pass-through output. Signal from AI+ and $\mathrm{AI}-$ is passed through $\mathrm{AOa}+$ and $\mathrm{AOa}-$ respectively when SEL=0.
$\begin{array}{\|l} 3 \\ 4 \end{array}$	$\begin{aligned} & \text { AOb+ } \\ & \text { AOb- } \end{aligned}$	Differential pass-through input	Differential analog pass-through output. Signal from AI+ and $\mathrm{AI}-$ is passed through $\mathrm{AOa}+$ and $\mathrm{AOa}-$ respectively when $\mathrm{SEL}=1$.
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { BI+ } \\ & \text { BI- } \end{aligned}$	Differential input	Differential input pair from PCIE signal source. Signal is passed through to the $\mathrm{BOa}+, \mathrm{BOa}$ - pin respectively when $\mathrm{SEL}=0$. Signal is passed through to the $\mathrm{BOb}+, \mathrm{BOb}-$ pin respectively when SEL $=1$.
19	$\begin{aligned} & \mathrm{BOa}+ \\ & \mathrm{BOa}- \end{aligned}$	Differential pass-through input	Differential analog pass-through output. Signal from BI+ and $\mathrm{BI}-$ is passed through $\mathrm{BOa}+$ and BOa - respectively when $\mathrm{SEL}=0$.
$\begin{array}{\|l\|} \hline 7 \\ 8 \end{array}$	$\begin{array}{\|l} \hline \text { BOb+ } \\ \text { BOb- } \end{array}$	Differential pass-through input	Differential analog pass-through output. Signal from BI+ and BI- is passed through $\mathrm{BOb}+$ and BOb - respectively when SEL=1.
$\begin{aligned} & \hline 11,13,15,21,24, \\ & 26,28, \\ & \text { (center pad) } \\ & \hline \end{aligned}$	GND	Ground input	Ground
10	NC	-	No Connect - Reserved, do not connect
16	SEL	3.6 V tolerant low-voltage single-ended input	SEL controls the mux through a flow-through latch.
$\begin{aligned} & 9,12,14,17,20, \\ & 25,27 \end{aligned}$	VDD	Power supply	Power, $3.3 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)
Storage Temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential ...

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Units
VDD	3.3 V Power Supply	3.0	3.3	3.6	V	
IDD	Total current from VDD $3.3 V ~ s u p p l y ~$		0		2.5	mA
TCASE	Case temperature range for operation within spec.		-40		85	Celsius

DC Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Conditions	Min	Typ ${ }^{(1)}$	Max	Units
$\mathrm{V}_{\text {IH-SEL }}{ }^{(2)}$	Input high level, SEL input		2.0		3.6	V
$\mathrm{V}_{\text {IL-SEL }}{ }^{(2)}$	Input Low Level, SEL input		0		0.8	V
$\mathrm{I}_{\mathrm{IN} \text { _SEL }}{ }^{(2)}$	Input Leakage Current, SEL input	Measured with input at $\mathrm{V}_{\text {IH-SEL }}$ max and $\mathrm{V}_{\mathrm{IL}-\text { SEL }}$ min	-10		10	$\mu \mathrm{A}$
R_{ON}	On Resistance	$\mathrm{V}_{\mathrm{DD}}=$ Min., $\mathrm{V}_{\text {IN }}=1.3 \mathrm{~V}, \mathrm{I}_{\text {IN }}=40 \mathrm{~mA}$			12	Ohm
CON	On Channel Capacitance	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		2.0		pF

Note:

1. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Dynamic Electrical Characteristics for $\mathrm{xI} \pm$, $\mathrm{xOy} \pm$

Parameter	Description	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Units
DDIL	Differential Insertion Loss	$\begin{aligned} & \mathrm{f}=1.2 \mathrm{GHz} \\ & \mathrm{f}=2.5 \mathrm{GHz} \\ & \mathrm{f}=5.0 \mathrm{GHz} \\ & \mathrm{f}=7.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -1.5 \\ & -2.0 \\ & -5.0 \\ & -9.0 \end{aligned}$			dB
DDIL ${ }_{\text {OFF }}$	Differential Off Isolation	$\mathrm{f}=0$ to 3.0 GHz			-20.0	
DDRL	Differential Return Loss	$\begin{aligned} & \mathrm{f}=0 \text { to } 2.8 \mathrm{GHz} \\ & \mathrm{f}=2.8 \text { to } 5.0 \mathrm{GHz} \\ & \mathrm{f}=5.0 \text { to } 7.5 \mathrm{GHz} \end{aligned}$		$\begin{gathered} \hline-14.0 \\ -8.0 \\ -4.0 \end{gathered}$		
DDNEXT	Near End Crosstalk	$\begin{aligned} & \mathrm{f}=0 \text { to } 2.5 \mathrm{GHz} \\ & \mathrm{f}=2.5 \text { to } 5.0 \mathrm{GHz} \\ & \mathrm{f}=5.0 \text { to } 7.5 \mathrm{GHz} \end{aligned}$			$\begin{aligned} & -32.0 \\ & -26.0 \\ & -20.0 \\ & \hline \end{aligned}$	

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Conditions	Min.	Typ.	Max.	Units
tPZH, tPZL	Line Enable Time - SEL to xI+/-, xOy+/-	See "Test Circuit for Electrical Characteristics"	0.5		12.0	ns
tPHZ, tPLZ	Line Disable Time - SEL to xI+/-, xOy+/-	See "Test Circuit for Electrical Characteristics"	0.5		12.0	ns
tb-b	Bit-to-bit skew within the same differential pair	See "Test Circuit for Electrical Characteristics"			7	ps
tch-ch	Channel-to-channel skew	See "Test Circuit for Electrical Characteristics"			35	ps

5.0 Gbps Receive Eye Mask (-3.5dB)

PI3PCIE 2215
3.3V, PCI Express®, 1-Lane, 2:1 Mux/DeMux Switch

Differential Insertion Loss

PI3PCIE 2215

Differential Off Isolation

Differential Crosstalk

Differential Insertion Loss and Return Loss Test Circuit

BALANCED PORT 1

Differential Off Isolation Test Circuit

BALANCED PORT 1

Differential Near End Crosstalk Test Circuit

Test Circuit for Electrical Characteristics ${ }^{(1-5)}$

Switch Positions

Test	Switch
$t_{\text {PLZ }}, t_{\text {PZL }}$	$2 \times V_{\text {DD }}$
$t_{\text {PHZ }}, t_{\text {PZH }}$	GND
Prop Delay	Open

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\quad \mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of the Pulse Generator
3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control. output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
5. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms

Voltage Waveforms Enable and Disable Times

Applications Information

Differential Inputs/Output Characteristics for Gen2 speeds

Symbol	Parameter	Min	Nom	Max	Units	Comments	
Tbit	Unit Interval	199.94	200.00	200.06	ps	Defined by Gen2 spec.	
VRX-Diffp-p	Differential Input Peak to Peak Voltage	TBD		1.200	V	VRX-DIFFp-p = 2*\|VRXD+ - VRX-D-	. Applies to IN_S and RX_IN signals.
$\mathrm{T}_{\text {RX-EYE }}$	Minimum Eye Width at IN_D input pair.	TBD			Tbit		
$\mathrm{V}_{\text {CM-AC-pp }}$	AC Peak CommonMode Input Voltage			100	mV	VCM-AC-pp = \|VRX-D+ + VRX-D-	/2 - VRX-CMDC. VRX-CM-DC = DC(avg) of \|VRX-D++VRX-D-//2 VCM-AC-pp includes all frequencies above 30 kHz .
ZRX-DIFF-DC	DC Differential Input Impedance	80	100	120	Ω	Rx DC Differential Mode impedance	
ZRX-DC	DC Input Impedance	40	50	60	Ω	Required IN_D+ as well as IN_D- DC impedance ($50 \Omega+/-20 \%$ tolerance). Includes mux resistance.	
$\mathrm{V}_{\text {RX-Bias }}$	Rx input termination voltage	0		2.0	V	Intended to limit powerup stress on PCIE output buffers.	

Package Mechanical: 28-Contact TQFN (ZH)

09-0066

Ordering Information

Ordering Code	Package Code	Package Type
PI3PCIE2215ZHE	ZH	Pb-free \& Green, 28-Contact TQFN

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb -free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

