: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

4.2V, Wide Bandwidth, 2-Channel, 2:1 Mux/DeMux USB 2.0 Switch w/ Single Select

Features

- USB 2.0 compliant
- R_{ON} is 4Ω typical
- Low bit-to-bit skew
- Low Crosstalk: -31dB @ 250 MHz
- Near-Zero propagation delay: 250ps
- Switching speed: 9ns
- Channel On Capacitance: 6pF (typical)
- VDD Operating Range: 2.7 V to 5.0 V
- ESD >2000V . . . Human Body Model
- $>700 \mathrm{MHz}$ bandwidth (or data frequency)
- Packaging (Pb-free \& Green):
- 12-contact, $1.6 \mathrm{~mm} \times 2.2 \mathrm{~mm}$, TQFN (ZK12)
—12-contact, $3 \mathrm{~mm} \times 3.5 \mathrm{~mm}$, TDFN (ZE12)

Application

- Routes signals for USB 2.0
- Hand held devices

Block Diagram

Truth Table

Function	SEL
Y_{n} to ${ }_{\mathrm{n}} \mathrm{I}_{\mathrm{O}}$	L
Y_{n} to ${ }_{\mathrm{n}} \mathrm{I}_{1}$	H

Description

The PI3USB10M is a single differential channel 2:1 multiplexer/ demultiplexer USB 2.0 Switch. Industry leading advantages include a propagation delay of less than 250 ps, resulting from its low channel resistance and I/O capacitance. The device multiplexes differential outputs from a USB Host device to one of two corresponding outputs. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. It is designed for low bit-to-bit skew, high channel-to-channel noise isolation and is compatible with various standards, such as High Speed USB $2.0(480 \mathrm{Mb} / \mathrm{s})$.

Pin Description (ZK12)

\square

Pin Description (ZE12)

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +5.25 V
DC Input Voltage	. -0.5 V to +5.5 V
DC Output Current	... 120 mA
Power Dissipation 0.5 W

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for USB 2.0 Switching over Operating Range

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}-4.4 \mathrm{~V}\right)$

Parameter	Description	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed HIGH level	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$	2.0			V
			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	1.6			
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed HIGH level				0.8	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Ma}$	$=-18 \mathrm{~mA}$		-0.7	-1.2	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$	$=\mathrm{V}_{\mathrm{DD}}$			± 5	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=$ Max.,	$\mathrm{N}=\mathrm{GND}$			± 5	$\mu \mathrm{A}$
R_{ON}	Switch On-Resistance ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$	$5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}},$		4.0	6.5	
$\mathrm{R}_{\text {FLAT(ON) }}$	On-Resistance Flatness ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min} ., \\ & \mathrm{V}_{\mathrm{DD}} \mathrm{I}_{\mathrm{IN}}=-4 \end{aligned}$	@ 1.5 V and		1.0		Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	On-Resistance match from center ports to any other port ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$	$\mathrm{V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}},$		0.9	2.0	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. $\quad \mathrm{V}_{\mathrm{DD}}=3.0-4.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between Y and In pin at indicated current through the Switch-On-Resistance is determined by the lower of the voltages on the two (Y, In) pins.

Power Supply Characteristics (VDD $=3.0-4.4 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ.	Max.	Units
I_{DD}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{DD}			800	$\mu \mathrm{~A}$

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

DC Electrical Characteristics for USB 2.0 Switching over Operating Range
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$)

Parameter	Description	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed HIGH level	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$	2.0			V
			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	1.6			
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed HIGH level				0.8	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Max.,	$=-18 \mathrm{~mA}$		-0.7	-1.2	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$	$=\mathrm{V}_{\mathrm{DD}}$			± 5	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=$ Max	= GND			± 5	
R_{ON}	Switch On-Resistance ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$	$5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}},$		4.0	6.5	
$\mathrm{R}_{\text {FLAT(ON) }}$	On-Resistance Flatness ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{DD}} \mathrm{I}_{\mathrm{IN}}=- \end{aligned}$	@ 1.5 V and		1.0		Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	On-Resistance match from center ports to any other port ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$	$\mathrm{V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$		0.9	2.0	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. $\quad \mathrm{V}_{\mathrm{DD}}=3.0-4.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between Y and In pin at indicated current through the Switch-On-Resistance is determined by the lower of the voltages on the two (Y, In) pins.

Power Supply Characteristics ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ.	Max.	Units
I_{DD}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{DD}			800	$\mu \mathrm{~A}$

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameters ${ }^{(3)}$	Description	Test Conditions ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	2	3	pF
CofF	Port I Capacitance, Switch OFF		4	6	
CON	Switch Capacitance, Switch ON		7.5	9.5	

Dynamic Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	Min.	Typ. ${ }^{(2)}$	Max.	Units
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=250 \mathrm{MHz}$		-31		dB
OIRR	OFF Isolation			-39		
BW	Bandwidth -3dB	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		700		MHz

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. This parameter is determined by device characterization but is not production tested.

Switching Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=3.0 \mathrm{~V}$ to 4.4 V)

Parameters	Description	Test ${ }^{(1)}$ Conditions	Min.	Typ.	Max.	Units
tpD	Propagation Delay ${ }^{(2,3)}$	See Test Circuit for Electrical Characteristics		0.15		ns
$\mathrm{t}_{\text {PZH }}$, $\mathrm{t}_{\text {PZL }}$	Line Enable Time - SEL to $\mathrm{Y}_{\mathrm{N}}, \mathrm{N}_{0}$, I_{N}		0.5		15.0	
tphz, tplz	Line Disable Time - SEL to $\mathrm{Y}_{\mathrm{N}}, \mathrm{N}_{0} \mathrm{I}_{0} \mathrm{I}_{\mathrm{N}}$		0.5		9.0	
$\mathrm{t}_{\text {SKC-C }}$	Output skew, channel-to-channel ${ }^{(2)}$			3.5	14	ps
${ }_{\text {tSKb-b }}$	Output skew, bit-to-bit (opposite transition of the same output (tpHL$\left.t_{\text {PLH }}\right)^{(2)}$			7.5	20	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Guaranteed by design.
3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 10 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the USB switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

Test Circuit for Dynamic Electrical Characteristics

Test Circuit for Electrical Characteristics

Notes:
$C_{L}=$ Load capacitance: includes jig and probe capacitance.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\text {OUT }}$ of the Pulse Generator
Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
The outputs are measured one at a time with on transition per measurement.

Switch Positions

Test	Switch
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$ (output on I-side)	$2 \times \mathrm{V}_{\mathrm{DD}}$
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$ (output on I-side)	GND
Prop Delay	Open

Application Information

Logic Inputs

The logic control inputs can be driven up to +3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, the output enables or select pins may be driven low to 0 V and high to 3.6 V . Driving IN Rail-to-Rail ${ }^{\circledR}$ minimizes power consumption.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd

Figure 1: USB 2.0 High-Speed (480Mbps) Signal Integrity Test Setup

Figure 2: USB 2.0 High-Speed (480Mbps) TP1, left eye, and TP5, right eye, tested with no PI3USB10M in the signal path

Figure 3: USB 2.0 High-Speed (480Mbps) TP1, left eye, and TP5, right eye, tested with PI3USB10M data signals connected

Switching Waveforms

Recommended Land Pattern

DATE: 04/18/06
Semiconductor Corporation
Notes:

1) All dimensions are in millimeters, angles in degrees

Ordering Information

Ordering Code	Package Code	Package Description	Top Marking
PI3USB10MZKE	ZK	Pb-free \& Green, 12-contact TQFN	UM
PI3USB10MZEE	ZE	Pb-free \& Green, 12-contact TDFN	YK

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- Adding an X suffix = Tape/Reel

