

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V, Wide Bandwidth, 2-Channel, 2:1 Mux/DeMux USB 2.0 Switch w/ Single Enable

Features

• R_{ON} is 4Ω typical

• Low bit-to-bit skew: 200ps

• Low Crosstalk: -22dB @ 250MHz

Near-Zero propagation delay: 250ps

• Switching speed: 9ns

• Channel On Capacitance: 6pF (typical)

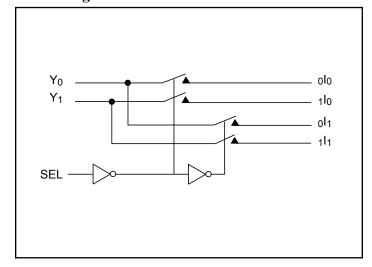
• V_{CC} Operating Range: +3.0V to +3.6V

• ESD>2000V . . . Human Body Model

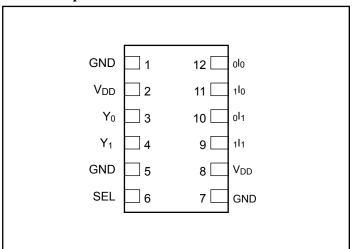
>500 MHz bandwidth (or data frequency)

• Packaging:

- Pb-free & Green, 12-contact TDFN (ZE)


Application

• Routes signals for USB 2.0


Description

The PI3USB10 is a 4- to 2-Channel multiplexer/demultiplexer USB 2.0 Switch with Hi-Z outputs. Industry leading advantages include a propagation delay of less than 250ps, resulting from its low channel resistance and I/O capacitance. The device multiplexes differential outputs from a USB Host device to one of two corresponding outputs. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. It is designed for low bit-to-bit skew, high channel-to-channel noise isolation and is compatible with various standards, such as High Speed USB 2.0 (480 Mb/s).

Block Diagram

Pin Description

Truth Table

Function	SEL
Y_n to $_nI_o$	L
Y_n to ${}_nI_1$	Н

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +4.0V
DC Input Voltage	0.5V to +5.5V
DC Output Current	120mA
Power Dissipation	0.5W

Note: Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for USB 2.0 Switching over Operating Range

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 3.3V \pm 10\%)$

Paramenter	Description	Test Conditions		Min.	Typ.(2)	Max.	Units
V	Input HIGH Voltage	Guaranteed	$V_{CC} = 4.2V$	2.0V			
$V_{ m IH}$	input fildri voltage	HIGH level	$V_{CC} = 3.3V$	1.6V			V
$ m V_{IL}$	Input LOW Voltage	Guaranteed HIC	GH level			0.8	V
V_{IK}	Clamp Diode Voltage	$V_{CC} = Max., I_{IN}$	$\sqrt{100} = -18 \text{mA}$		-0.7	-1.2	
${ m I}_{ m IH}$	Input HIGH Current	$V_{CC} = Max., V_I$	N = VCC			±5	^
${ m I}_{ m IL}$	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$				±5	μΑ
R _{ON}	Switch On-Resistance ⁽³⁾	$\begin{aligned} V_{CC} &= Min., \ 1.25V \leq V_{IN} \leq V_{CC}, \\ I_{IN} &= -40mA \end{aligned}$			4	8	
R _{FLAT(ON)}	On-Resistance Flatness ⁽⁴⁾	V_{CC} = Min., V_{IN} @ 1.5V and V_{CC} I_{IN} = -40mA			1.0		Ω
$\Delta R_{ m ON}$	On-Resistance match from center ports to any other port ⁽⁴⁾	$V_{CC} = Min., 1.5$ $I_{IN} = -40mA$	$V \le V_{IN} \le V_{CC}$		0.9	2	

Capacitance ($T_A = 25$ °C, f = 1MHz)

Parameters ⁽⁴⁾	Description	Test Conditions	Тур.	Max.	Units
C_{IN}	Input Capacitance		2.0	3.0	
C_{OFF}	Port I Capacitance, Switch OFF	$V_{IN} = 0V$	4.0	6.0	pF
C _{ON}	Switch Capacitance, Switch ON		6.0	10.0	

Notes:

- 1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C ambient and maximum loading.
- 3. Measured by the voltage drop between A and B pins at indicated current through the switch. ON-resistance is determined by the lower of the voltages on the two (A & B) pins.
- 4. This parameter is determined by device characterization but is not production tested.

06-0013 2 PS8718B 03/16/06

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power Supply Current	$V_{CC} = Max., V_{IN} = GND \text{ or } V_{CC}$			800	μΑ

Notes:

- 1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25C$ ambient and maximum loading.
- 3. Per TTL driven input (control inputs only); A and B pins do not contribute to I_{CC}.

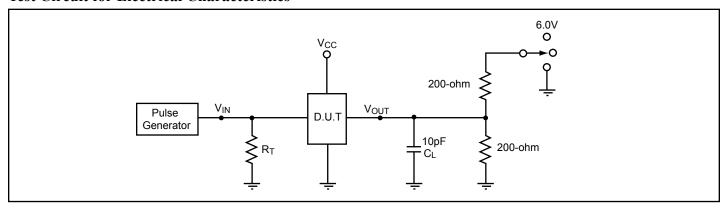
Dynamic Electrical Characteristics Over the Operating Range

 $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \ V_{CC} = 3.3\text{V} \pm 10\%, \text{GND} = 0\text{V})$

Parameters	Description	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
X_{TALK}	Crosstalk	D = 1000 f= 250 MH-		-27		σĿ
O _{IRR}	OFF Isolation	$R_L = 100\Omega$, $f = 250$ MHz		-32		dB
BW	Bandwidth -3dB	$R_L = 100\Omega$		500		MHz

Switching Characteristics

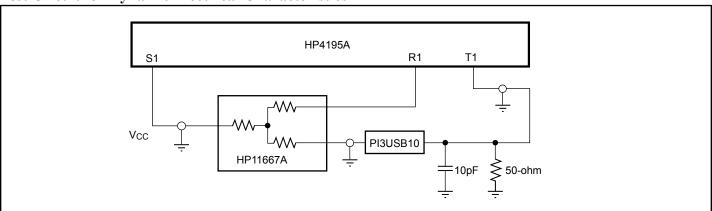
Parameters	Description	Test Conditions	Min.	Тур.(1)	Max.	Units
t_{PD}	Propagation Delay ^(2,3)		-	0.25		
t _{PZH} , t _{PZL}	Line Enable Time - SEL to Y _N , NI ₀ , I _N		0.5	-	15.0	
t _{PHZ} , t _{PLZ}	Line Disable Time - SEL to Y _N , NI ₀ , I _N		0.5	-	9.0	ns
t _{SK(o)}	Output Skew between center port to any other port ⁽²⁾		-	0.1	0.2	113
t _{SK(p)}	Skew between opposite transitions of the same output (t_{PHL} - t_{PLH}) (2)		-	0.1	0.2	


Notes:

- 1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Guaranteed by design.
- 3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

06-0013 3 PS8718B 03/16/06

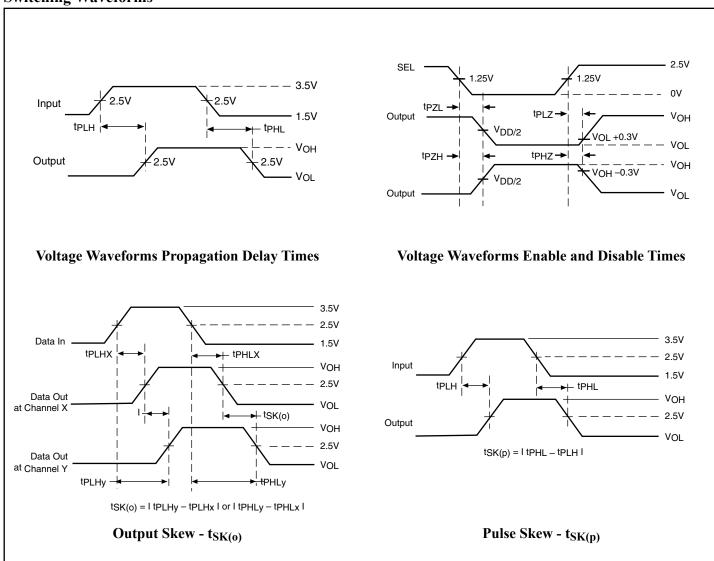
Test Circuit for Electrical Characteristics⁽¹⁾


Notes:

- 1. $C_L = Load$ capacitance: includes jig and probe capacitance.
- 2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- 3. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 4. All input impulses are supplied by generators having the following characteristics: $PRR \le MHz$, $Z_O = 50\Omega$, $t_R \le 2.5$ ns, $t_F \le 2.5$ ns.
- 5. The outputs are measured one at a time with on transition per measurement.

Switch Positions

Test	Switch
t _{PLZ} , t _{PZL} (output on I-side)	6.0V
t _{PHZ} , t _{PZH} (output on I-side)	GND
Prop Delay	Open


Test Circuit for Dynamic Electrical Characteristics

06-0013 4 PS8718B 03/16/06

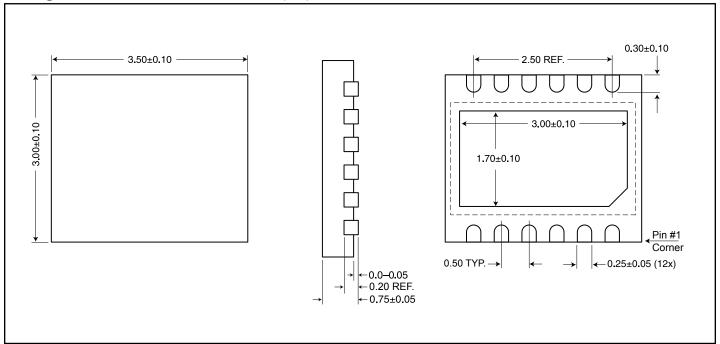
Switching Waveforms

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, the output enables or select pins may be driven low to 0V and high to 3.6V. Driving IN Rail-to-Rail® minimizes power consumption.

Power-Supply Sequencing


Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply V_{CC} before applying signals to the input/output or control pins.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd

06-0013 5 PS8718B 03/16/06

Package Mechanical: 12-Contact TDFN (ZE)

Ordering Information

Ordering Code	Package Code	Package Description	Top Marking
PI3USB10ZEE	ZE	Pb-free & Green, 12-contact TDFN	YJE

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/