

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V USB 3.0 SuperSpeed

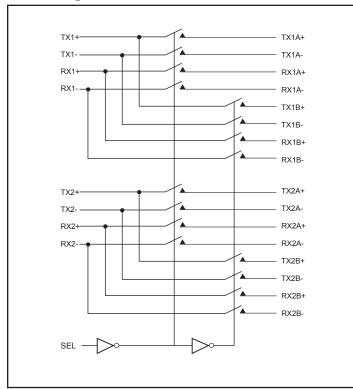
Dual 2:1 Mux/DeMux Switch with Enable

Features

- Dual 2:1 USB 3.0 Switch
- Bi-directional Operation
- 5 Gbps Performance
- Very high -3 dB bandwidth: 8.2 GHz
- Low Insertion Loss: -1dB @ 2.5 GHz
- Excellent Return Loss: -29 dB @ 2.5 GHz
- Low Crosstalk: -37 dB @ 2.5 GHz
- Low Off Isolation: -25 dB @ 2.5 GHz
- Low Bit-to-Bit Skew, 10 ps max
- Low Channel-to-Channel Skew, 20 ps max
- Supply Voltage 3.3V
- Low power dissipation: 0.5 mW typ.
- Packaging (Pb-free & Green):
 - 42-contact, TQFN (ZH42)

Description

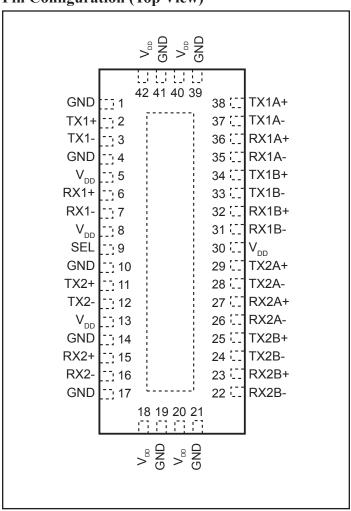
Pericom Semiconductor's PI3USB304 is a dual USB 3.0 2:1 switch. It can switch transmit and receive differential signals for two 5 Gbps SuperSpeed USB 3.0 lanes.


Using advanced high-speed transmission gate technology, PI3USB304 is bidirectional and offers both excellent signal integrity and very low power.

-3 dB bandwidth is 8.2 GHz. Insertion loss is extremely low, only 1 dB at 2.5 GHz. All other ac parameters – return loss, crosstalk, off isolation – lead the industry in performance. Power dissipation is very small – 0.5 mW typical (0.15 mA @ 3.3V)

Application

Routing USB 3.0 SuperSpeed signals.


Block Diagram

Truth Table

SEL	Function
L	Path A
Н	Path B

Pin Configuration (Top View)

Pin Description

Pin #	Pin Name	I/O	Description		
2	TX1+	I/O	C:11/O Ch10 Dant TV1		
3	TX1-	1/0	Signal I/O, Channel 0, Port TX1		
6	RX1+	I/O	Signal I/O, Channel 1, Port RX1		
7	RX1-	1/0	Signal 1/O, Chamier 1, Port RX1		
11	TX2+	I/O	Signal I/O, Channel 2, Port TX2		
12	TX2-	1/0	Signal 1/O, Chamici 2, 1 of 1 1 A 2		
15	RX2+	I/O	Signal I/O, Channel 3, Port RX2		
16	RX2-	1/0	Signal 1/O, Chamiel 3, 1 of t KA2		
38	TX1A+	I/O	Signal I/O, Channel 0, Port TX1A		
37	TX1A-	1/0	Signal 1/O, Chamiel 0, 1 oft 1 A171		
36	RX1A+	I/O	Signal I/O, Channel 1, Port RX1A		
35	RX1A-	170	oignai 1/0, Chainich 1, Folt KATA		
29	TX2A+	I/O	Signal I/O, Channel 2, Port TX2A		
28	TX2A-	170			
27	RX2A+	I/O	Signal I/O, Channel 3, Port RX2A		
26	RX2A-	170			
34	TX1B+	I/O	Signal I/O, Channel 0, Port TX1B		
33	TX1B-	1,0	orginal 1/O, Chailliel 0, 1 Oft 1 ATD		
32	RX1B+	I/O	Signal I/O, Channel 1, Port RX1B		
31	RX1B-	1,0	orginal 1/O, Chamiel 1, Fort KAID		
25	TX2B+	I/O	Signal I/O, Channel 2, Port TX2B		
24	TX2B-	1,0	orginal 1/O, Chamici 2, Fort 1725		
23	RX2B+	I/O	Signal I/O, Channel 3, Port RX2B		
22	RX2B-	orginal 1/O, Chamiet 3, 1 of t KA2D			
9	SEL	I	SEL=L: path A, SEL=H: path B, see truth table on page 1		
5, 8, 13,18, 20, 30, 40, 42	V_{DD}	Pwr	$3.3V \pm 10\%$ Positive Supply Voltage		
1, 4, 10, 14, 17, 19, 21, 39, 41, Center Pad	GND	Pwr	Power ground		

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	-65°C to +150°C
Supply Voltage to Ground Potential	-0.5V to +4.6V
Channel DC Input Voltage	0.5V to 1.5V
DC Output Current	120mA
Power Dissipation	0.5W
SEL DC Input Voltage	0.5V to 4.6V

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Units
$V_{ m DD}$	3.3V Power Supply		3.0	3.3	3.6	V
I _{DD}	Total current from V _{DD} 3.3V supply	$SEL = 0V \text{ or } V_{DD}$		0.15	1	mA
T _{CASE}	Case temperature range for operation within spec.		-40		85	Celsius

DC Electrical Characteristics for Switching over Operating Range

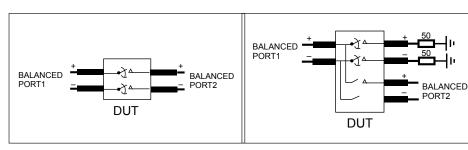
Parameters	Description	Test Conditions ⁽¹⁾	Min	Typ ⁽¹⁾	Max	Units
V _{IH} - SEL	Input HIGH Voltage, SEL Input		2		3.6	
V _{IL} - SEL	Input LOW Voltage, SEL Input		0		0.8	V
v_{IK}	Clamp Diode Voltage	$V_{DD} = Max., I_{IN} = -18mA$		-0.7	-1.2	
IIH	Input HIGH Current, SEL	$V_{DD} = Max., V_{IN} = V_{DD}$	-5		+5	
I_{IL}	Input LOW Current, SEL	$V_{DD} = Max., V_{IN} = 0V$	-5		+5	μΑ
IIH	Input HIGH Current, T _X , R _X	$V_{DD} = Max., V_{IN} = 1.5V$	-10		+10	
I _{IL}	Input LOW Current, T _X , R _X	$V_{DD} = Max., V_{IN} = 0V$	-10		+10	μΑ
IOZH	HighZ HIGH Current, T _X , R _X	$V_{\mathrm{DD}} = \mathrm{Max.}, V_{\mathrm{IN}} = 1.5\mathrm{V}$	-10		+10	μΑ
IOZL	HighZ LOW Current, T _X , R _X	$V_{DD} = Max., V_{IN} = 0V$	-10		+10	μΑ

Note:

12-0315 3 www.pericom.com P-0.1 01/16/13

^{1.} Typical values are at $V_{DD} = 3.3V$, $T_A = 25$ °C ambient and maximum loading.

Switching Characteristics

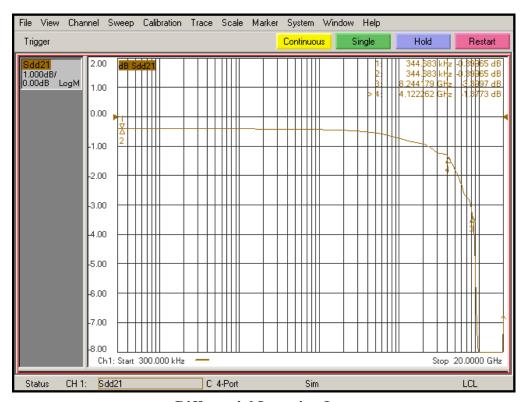

Param- eters	Description	Test Conditions	Min.	Тур.	Max.	Units
tpZH, tpZL	Line Enable Time		2	20	25	
tpHZ, tPLZ	Line Disable Time		2	5	25	ns
t _{b-b}	Bit-to-bit skew within the same differential pair			5	10	ps
t _{ch-ch}	Channel-to-channel skew				20	ps

Dynamic Electrical Characteristics

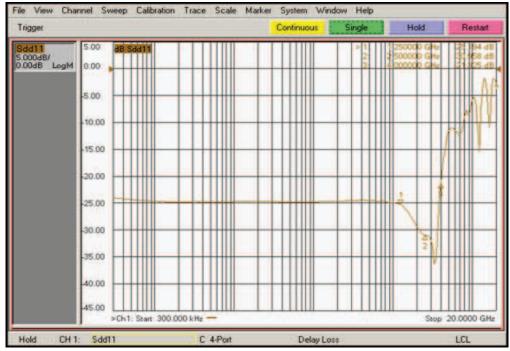
Param- eter	Description	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
DDIL	Differential Insertion Loss	f=2.5GHz		-1.0	-1.2	dB
DDIL	$(V_{IN} = -10 dBm, DC = 0V)$	f=5GHz		-1.8	-2.2	ав
DDILOFF	Differential Off Isolation	f=2.5GHz		-25		dB
DDRL Differential Return Loss	Differential Return Loss	f= 0MHz - 2.5GHz	-23	-29		dB
DDKL	DIRECTION DIFFERENTIAL RETURN LOSS	f=2.5GHz - 5GHz	-14	-18		шь
DDNEXT Near End Crosstalk	f= 0MHz - 2.5GHz	-30	-38		dB	
	iveal Elid Closstaik	f=2.5GHz - 5GHz	-28	-34		шь
BW	-3dB Bandwidth			8.2		GHz

Notes:

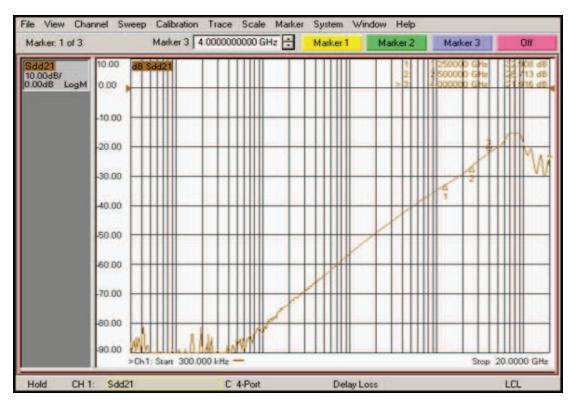
^{1.} Guaranteed by design. Typical values are at $V_{DD} = 3.3V$, $T_A = 25$ °C ambient and maximum loading.



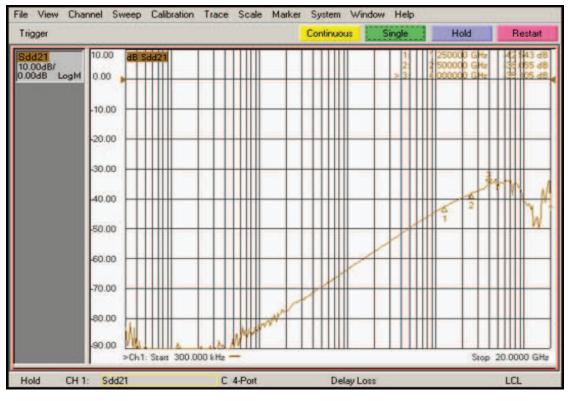
Diff. Insertion Loss and Return Test Circuit


Diff. Off Isolation Test Circuit

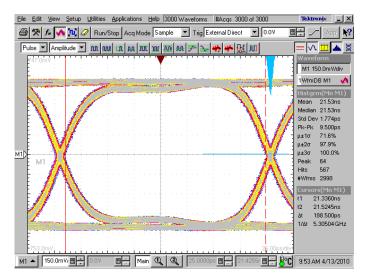
Diff. Near End Xtalk Test Circuit

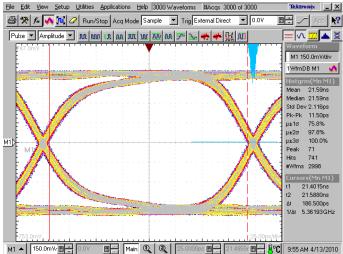


Differential Insertion Loss



Differential Return Loss


Differential Off Isolation



Differential Crosstalk

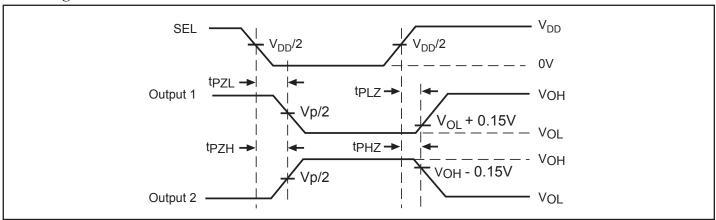
12-0315 6 www.pericom.com P-0.1 01/16/13



5.0 Gbps RX signal eye without PI3USB304

5.0 Gbps RX signal eye with PI3USB304

Test Circuit for Electrical Characteristics⁽¹⁻⁵⁾


Switch Positions

Test	Switch
$t_{\rm PLZ}, t_{\rm PZL}$	3.0V
$t_{\mathrm{PHZ}}, t_{\mathrm{PZH}}$	GND
Prop Delay	Open

Notes:

- 1. C_L = Load capacitance: includes jig and probe capacitance.
- 2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- 3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control. output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 4. All input impulses are supplied by generators having the following characteristics: $PRR \le MHz$, $Z_O = 50\Omega$, $t_R \le 2.5$ ns, $t_F \le 2.5$ ns.
- 5. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms



Voltage Waveforms Enable and Disable Times

12-0315 8 www.pericom.com P-0.1 01/16/13

Packaging Information

Note:

For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI3USB304ZHE	ZH	Pb-free & Green, 42-contact TQFN

Notes

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com