imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

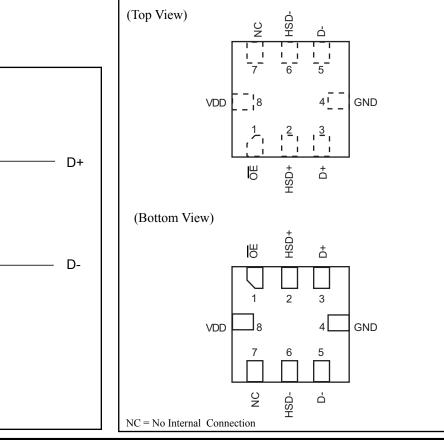
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PI3USB32

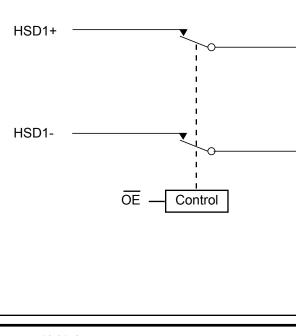
High-Speed USB 2.0 (480 Mbps) 1-Port Switch with Full Power Down Feature

Features

- \cdot V_{DD} Operation at 3 V and 4.3 V
- · 1.8-V Compatible Control-Pin Inputs
- · I_{OFF} Supports Full Power-Down Mode
- Operation
- \cdot r_{on} = 6-Ohm Typical
- $\cdot \Delta r_{on} < 0.35$ -Ohm Typical
- \cdot Cio(ON) = 5 pF Typical
- · Low Power Consumption
- · ESD Performance
- 7kV Human-Body Model, per JESD22 spec (A114-B, Class II)
- 1000-V Charged-Device Model (C101)
- ±4kV contact, per IEC61000-4-2
- \cdot Wide –3-dB Bandwidth = 2110 MHz Typical
- · Packaged in 8-Pin TQFN (1.5 mm ' 1.5 mm)


Application

• Routes Signals for USB 1.0, 1.1, and 2.0


Description

The PI3USB32 is a high-bandwidth switch specially designed for the switching of high-speed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os. The wide bandwidth (750 MHz) of this switch allows signals to pass with minimum edge and phase distortion. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. It is designed for low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 (480 Mbps).

Pin Configuiration

Block Diagram

Pin Description

Name	Description
ŌĒ	Bus-switch enable
D+, D-, HSD+, HSD-	Data ports
NC	No connect

Truth Table

OE Description		
Н	Disconnect	
L	D+, D- = HSD+, HSD-	

Absolute Maximum Ratings⁽¹⁾

(Over operating free-air temperature range unless otherwise noted.)

Supply Voltage Range (V _{DD})0.5V to +7V
Control Input Voltage Range $(V_{IN})^{(2)(3)}$ 0.5V to +7V
VI/O Switch I/O Voltage Range ⁽²⁾⁽³⁾⁽⁴⁾
HSD+, HSD0.5V to V _{DD} +0.3
D+, D– when $V_{DD} > 0$ –0.5V to V_{DD} +0.3
D+, D- when $V_{DD} > 0$
Control Input Clamp Current50 mA
I/O Port Clamp Current50 mA
ON-state switch current ⁽⁵⁾ ±64 mA
Continuous current through V _{DD} or GND±100 mA
I/O Port Clamp Current50 mA

Note:

(1) Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

(2) All voltages are with respect to ground, unless otherwise specified.

(3) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(4) V_I and V_O are used to denote specific conditions for $V_{I/O}$.

(5) I_{I} and I_{O} are used to denote specific conditions for $I_{I/O}.$

Reccomended Operating Conditions⁽¹⁾

Parameter	Description		Min.	Max.	Units
V _{DD}	Supply voltage		3.0	4.3	V
Max	High-level control input voltage $V_{DD} = 3V \text{ to } 3.6V$ $V_{DD} = 4.3 \text{ V}$	V _{DD} = 3V to 3.6V	1.3		v
V _{IH}		V _{DD} = 4.3 V	1.7		v
Ma		$V_{DD} = 3V \text{ to } 3.6V$		0.5	v
V _{IL} Input LOW Voltage		V _{DD} = 4.3 V		0.6	v
V _{I/O}	Data input/output voltage		0	V _{DD}	V
T _A	Operating free-air temperature		-40	85	°C

Notes:

1. All unused control inputs of the device must be held at VDD or GND to ensure proper device operation.

PARA	PARAMETER TEST CONDITIONS ¹ MIN TYP ⁽²⁾ M		MAX	UNIT	
VIK		V _{DD} = 3 V, I _I = -18 mA		-1.2	V
I _{IN}	Control inputs	V_{DD} = 4.3 V, V_{IN} = 0 to 4.3 V, V_{DD} = 0 V		±1	μA
$I_{OZ}^{(3)}$		V_{DD} = 4.3 V, V_{O} = 0 to 3.6V, V_{I} = 0, Switch OFF		±1	μA
IOFF	D+ and D-	V_{DD} = 0 V, V_O = 0 to 4.3 V, V_I = 0, V_{IN} = V_{DD} or GND		±2	μA
Icc		$V_{DD} = 4.3 \text{ V}, I_{I/O} = 0$		70	μA
$\Delta I_{CC}^{(4)}$	Control inputs	V _{DD} = 4.3 V, V _{IN} = 2.6 V		10	μA
C _{IN}	Control inputs	$V_{DD} = 0 V, V_{IN} = V_{DD} \text{ or GND}$	1		pF
Cio(OFI	F)	V _{DD} = 3.3 V, Switch OFF	2		pF
Cio(ON)	V _{DD} = 3.3 V, Switch ON	5		pF
R _{ON} ⁽⁵⁾		V _{DD} = 3 V, V _I = 0.4 V, IO = -8 mA	6	10	Ω
ΔR_{ON}		V _{DD} = 3 V, V _I = 0.4 V, IO = -8 mA	0.35		Ω
$\Delta R_{ON(flat})$	at)	V _{DD} = 3 V, V _I = 0 V or 1 V, IO = –8 mA	2		Ω

Electrical Characteristics	over operating free-air temperature range	ge (unless otherwise noted)
-----------------------------------	---	-----------------------------

Notes:

1. V_{IN} and I_{IN} refer to control input (\overline{OE}). V_I , V_O , I_I , and I_O refer to data pins.

2. All typical values are at $V_{DD} = 3.3 \text{ V}$ (unless otherwise noted), $T_A = 25^{\circ}\text{C}$.

3. For I/O ports, the parameter I_{OZ} includes the input leakage current.

4. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VDD or GND.

5. Measured by the voltage drop between the D and HSD terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two terminals.

03/25/10

Parameter	Description	Test Conditions ⁽¹⁾	Typ. ⁽¹⁾	Units
O _{IRR}	OFF isolation	$R_L = 50$ -Ohms, f = 240 MHz	-30	dB
BW	Bandwidth (-3 dB)	$R_L = 50$ -Ohms	2110	MHz
Xtalk	Crosstalk	R_L =50-Ohms, f = 240 MHz	-55	dB

Dynamic Electrical Characteristics (over operating range, $T_A = -40^{\circ}C$ TO 85°C, $V_{DD} = 3.3$ V ± 10%, GND = 0 V)

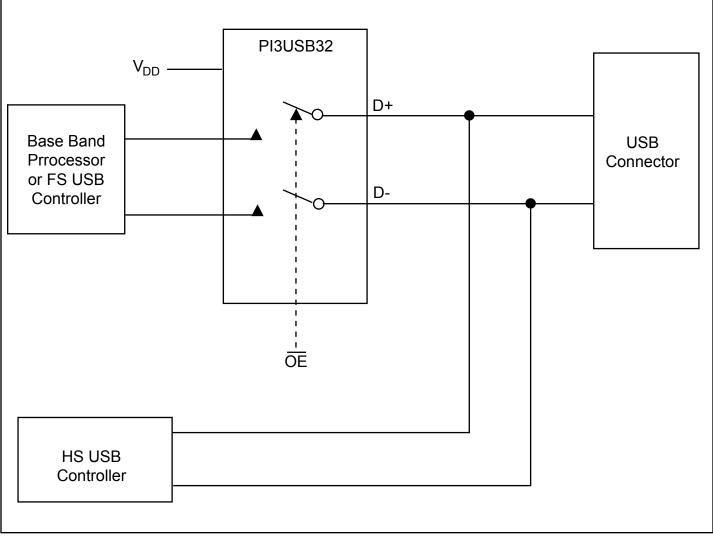
Notes:

1. For Max or Min conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type.

Switching Characteristics (over operating range, $T_A = -40^{\circ}$ C TO 85°C, $V_{DD} = 3.3 \text{ V} \pm 10\%$, GND = 0 V)

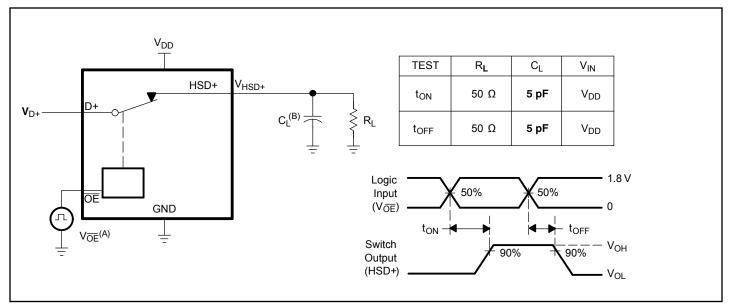
Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур.	Max.	Units
t _{PD}	Propagation Delay ^(2,3)	$R_L = 50 \Omega$, $C_L = 5 pF$			0.35	ns
t _{ON}	Line Enable Time, \overline{OE} to D+/D-	$R_L = 50 \Omega, C_L = 5 pF$			55	ns
t _{OFF}	Line Disable Time - \overline{OE} to D+/D-	$R_L = 50 \Omega, C_L = 5 pF$			25	ns
t _{SK(P)}	Skew between opposite transitions of the same output $(t_{PHL} - t_{PLH})^2$	$R_L = 50 \Omega, C_L = 5 pF$		50		ps
tj	Total Jitter ²	$R_L = 50 \Omega, C_L = 5$ pF, tR = t _F = 500 ps at 480 Mbps (PBRS= 2 ¹⁵ - 1)		200		ps

Notes:


1. For Max or Min conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Guaranteed by design.

3. The bus switch contributes no propagational delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 10-pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.



Application Information

Application Diagram

Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

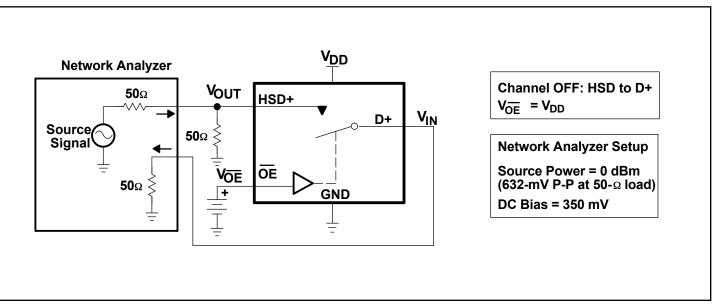


Figure 8. OFF Isolation (OIRR)

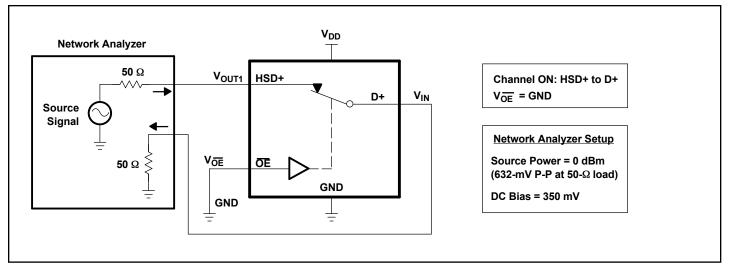
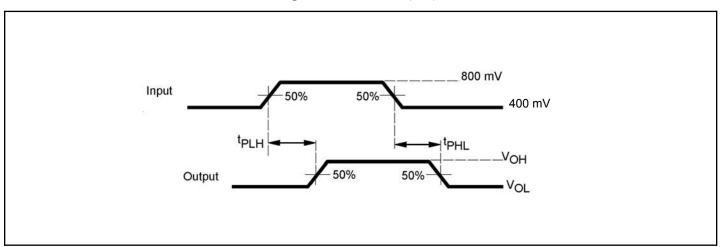
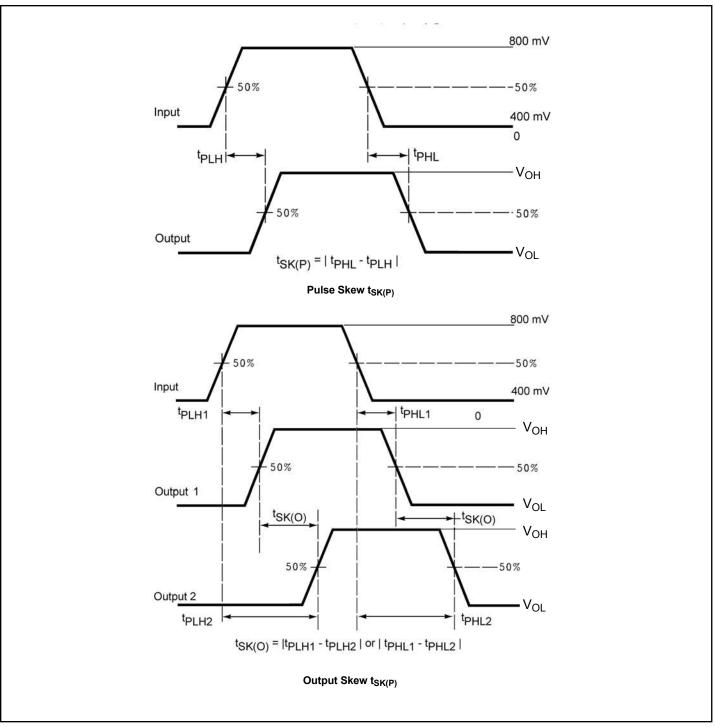
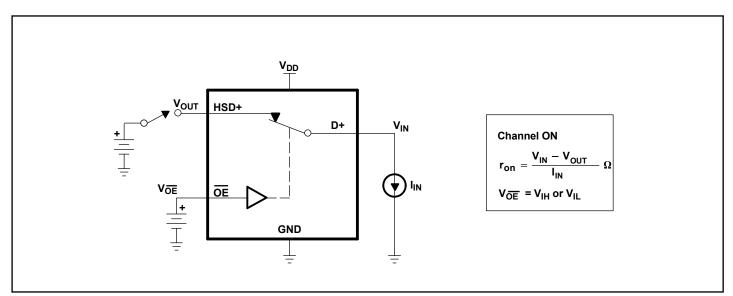
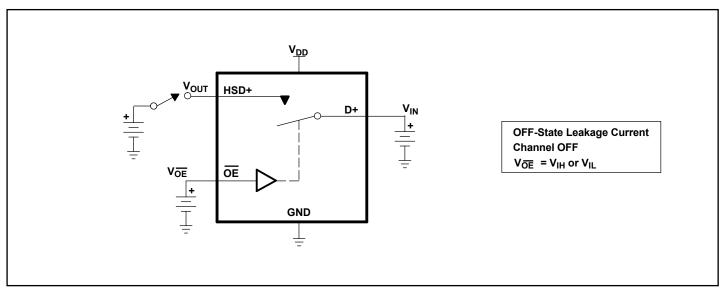
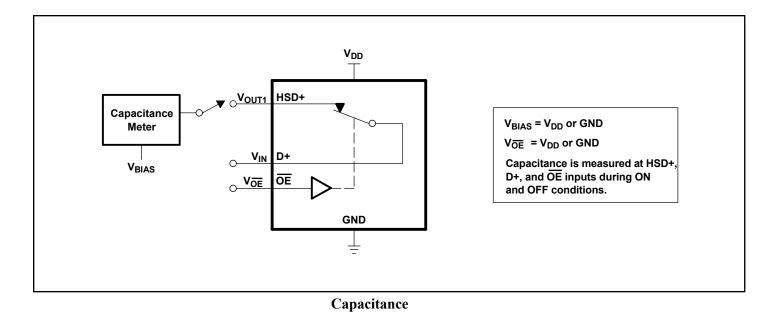




Figure 10. Bandwidth (BW)

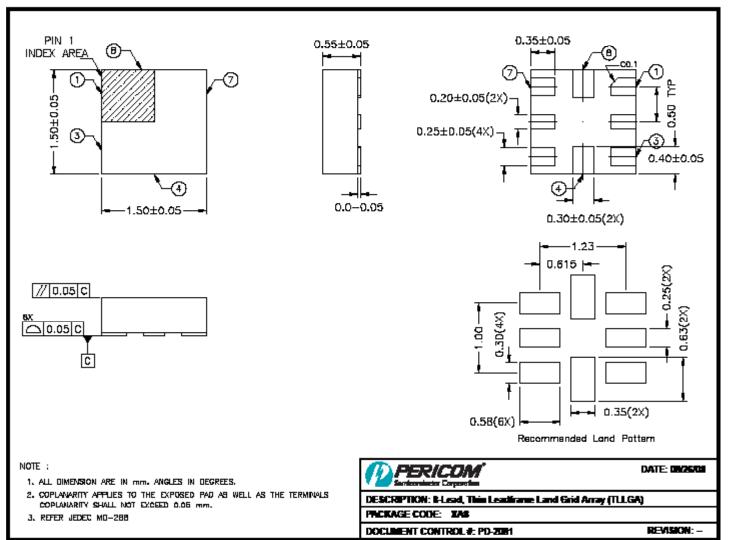




Skew Test



ON-State Resistance (ron)


OFF-State Leakage Current

PI3USB32 High-Speed USB 2.0 (480 Mbps) 1-port Switch with Full Power Down Feature

D-2081

Ordering Information

Ordering Code	Package Code	Package Description	Top Mark
PI3USB32XAE	XA	8-pin, TQFN	EK

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

• E = Pb-free and Green

• Adding X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com