: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low On-Resistance, 3.3V High-Bandwidth 3-Port, 4:1 Mux/DeMux VideoSwitch

Features

- Near-Zero propagation delay
- 5Ω switches connect inputs to outputs
- High signal passing bandwidth (375MHz)
- Beyond Rail-to-Rail switching
- 5 V I/O tolerant with 3.3 V supply
- 2.5 V and 3.3 V supply voltage operation
- Hot insertion capable
- Low Crosstalk ($\mathrm{X}_{\text {TALK }}=-60 \mathrm{~dB}$ Typ.)
- Low Off-Isolation ($\mathrm{O}_{\text {IRR }}=-60 \mathrm{db}$ Typ.)
- Industrial operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 2 KV ESD Protection (human body model)
- Latch-up performance $>250 \mathrm{~mA}$ per JESD17
- Packaging (Pb -free \& greeen available): - 40-Pin 150-mil wide plastic BQSOP(B)

Pin Configuration

Notes:

1. N.C = No internal connection

Description

The PI3V314 is a true bi-directional 3-Port $4: 1$ multiplexer/ demultiplexer with Hi-Z outputs that is recommended for both RGB and composite video switching applications. With the increased 4: 1 channels, multiple components, such as VCR, DVD, PC1, PC2 and etc. can be put on the video networks. The VideoSwitch can be driven from a current output RAMDAC or voltage output composite video source.

Low On-Resistance, Low Crosstalk, Low OFF Isolation and wide bandwidth features make it ideal for video and other applications. Industry leading advantages include a near zero propagation delay, resulting from its low channel resistance and I/O capacitance. The switch is bi-directional and offers little or no attenuation of the highspeed signals at the outputs. The device also has exceptional high current capability which is far greater than most analog switches offered today. The PI3V314 offers a high-performance (375 MHz), low-cost solution to switch between video sources.

Applications

- Projection TV and LCD TV
- Video consumer applications
- Analog video signal processing

Pin Description

Pin Name	Description
${ }_{I} A_{N}, I_{N}$	Data Inputs
S_{0-3}	Select Inputs
$\overline{\overline{E N}_{0}}$ to $\overline{\mathrm{EN}_{1}}$	Enable
Y_{A} to Y_{C}	Data Outputs
GND	Ground
V_{CC}	Power

Block Diagram

Notes:

1. For video applications: In order to control Muxing and DeMuxing of all the 12 to 3 channels with the same control plane, the following connectoins need to be made on the board:
a. $\overline{\mathrm{EN0}}$ and $\overline{\mathrm{EN1}}$ need to be tied together
b. S1 and S3 need to be tied together
c. S 0 and S 2 need to be tied together

Truth Table $1^{(1)}$

Enable	Select			
$\overline{\mathbf{E N}_{\mathbf{0}}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{Y}_{\mathbf{A}} / \mathbf{Y}_{\mathbf{B}}$	Function
H	X	X	Hi-Z	Disable
L	L	L	I 0	S1-S $0=0$
L	L	H	I1	S1-S0 $=1$
L	H	L	I2	S1-S0 $=2$
L	H	H	I3	S1-S0 $=3$

Truth Table $2^{(1)}$

Enable	Select			
$\overline{\mathbf{E N}_{\mathbf{1}}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{C}}$	Function
H	X	X	Hi-Z	Disable
L	L	L	I0	S3-S2 $=0$
L	L	H	I1	S3-S2 $=1$
L	H	L	I2	S3-S2 $=2$
L	H	H	I3	S3-S2 $=3$

Notes:

1. $\mathrm{H}=$ High Voltage Level; $\mathrm{L}=$ Low Voltage Level

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +4.6 V
DC Input Voltage .. -0.5 V to +6.0 V
DC Output Current.. 120 mA
Power Dissipation .. 0.5 W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics, 3.3V Supply (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ ${ }^{(2)}$	Max.	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-1.3	-1.8	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$			± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	
IOZH	High Impedance Output Current	$0 \leq \mathrm{Y}, \mathrm{In} \leq \mathrm{V}_{\mathrm{CC}}$			± 1	
R_{ON}	Switch On-Resistance ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=48 \mathrm{~mA} \text { or }-64 \mathrm{~mA} \end{aligned}$		4	6	Ω
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-15 \mathrm{~mA}$		5	8	

DC Electrical Characteristics, 2.5V Supply (Over Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 10 \%$)

Parameters ${ }^{(5)}$	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	1.8		$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Inout LOW Voltage	Guaranteed Logic LOW Level	-0.3		0.8	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {IN }}=-6 \mathrm{~mA}$		-0.7	-1.8	
$\mathrm{I}_{\text {IH }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	
IOZH	High Impedance Current	$0 \leq \mathrm{Y}, \mathrm{In} \leq \mathrm{V}_{\mathrm{CC}}$			± 1	
R_{ON}	Switch On-Resistance ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=-48 \mathrm{~mA} \end{aligned}$		6	8	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=2.25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=-15 \mathrm{~mA} \end{aligned}$		7	14	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between Y and In pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (Y, In) pins.

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{f}=1 \mathrm{MHz}\right)$

Parameters ${ }^{(2)}$	Description	Test Conditions	Typ. ${ }^{(1)}$	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	3.0	pF
COFF(IN)	In Capacitance, Switch Off		3.5	
$\mathrm{C}_{\text {OFF(Y) }}$	Y Capacitance, Switch Off		12	
CON	Y/In Capacitance, Switch On		15.0	

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(\mathbf{1)}}$	Min.	Typ. ${ }^{(\mathbf{2})}$	Max.	Units
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=$ GND or V_{CC}			1.6	mA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.

Dynamic Electrical Characteristics Over the Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Condition	Min.	Typ.	Max.	Units
$\mathrm{X}_{\text {TALK }}$	Crosstalk	See Test Diagram $(10 \mathrm{MHz})$		-60		dB
$\mathrm{O}_{\text {IRR }}$	Off-Isolation	See Test Diagram $(10 \mathrm{MHz})$		-60		
BW	-3dB Bandwidth	See Test Diagram $\left(\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}\right)$		375		MHz

Switching Characteristics over 3.3V Operating Range

Parameters	Description	Conditions ${ }^{(1)}$	Com.		Units
			Min.	Max.	
${ }^{\text {tpLH }}$ tphL	Propagation Delay ${ }^{(2,3)} \mathrm{Y}$ to In, In to Y	See Test Diagram		0.3	ns
$t_{\text {PZH }}$ tpZL	Enable Time S or $\overline{\mathrm{EN}}$ to Y or In	See Test Diagram	1.5	9.0	
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Disable Time S or $\overline{\mathrm{EN}}$ to Y or In		1.5	9.0	

Switching Characteristics over 2.5V Operating Range

Parameters	Description	Conditions ${ }^{(1)}$	Com.		Units
			Min.	Max.	
${ }^{\text {tpLH }}$ tpHL	Propagation Delay ${ }^{(2,3)} \mathrm{Y}$ to In, In to Y	See Test Diagram		0.3	ns
tPZH tpZL	Enable Time S or $\overline{\mathrm{EN}}$ to Y or In	See Test Diagram	1.5	15.0	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \text { tPLZ } \end{aligned}$	Disable Time S or $\overline{\mathrm{EN}}$ to Y or In		1.5	12.0	

Notes:

1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30 ns for 10 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Bandwidth vs Capacitance

Test Circuit for Electrical Characteristics ${ }^{(1)}$

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\text {OUT }}$ of the Pulse Generator
3. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
5. The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch
t $_{\text {PLZ }}$, t $_{\text {PZL }}$	6.0 V
t $_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$	GND
Prop Delay	Open

Switching Waveforms

Test Circuit for Dynamic Electrical Characteristics

Off Isolation $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\right)$

Crosstalk ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$)

ABW: 300 Hz ST: 13.7 sec

Applications Information

Logic Inputs

The logic control inputs can be driven upto 3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, $\overline{\mathrm{EN}}$ maybe driven LOW to 0 V and HIGH to 3.6 V . Driving $\overline{\mathrm{EN}}$ Rail-to-Rail ${ }^{\circledR}$ minimizes power consumption.

Hot Insertion

For Datacom and Telecom applications that have ten or more volts passing through the backplane, a high voltage from the power supply may be seen at the device input pins during hot insertion. The PI3Vxxx devices have maximum limits of 6 V and 120 mA for 20 ns . If the power is higher or applied for a longer time or repeatedly reaches the maximum limits, the devices can be damaged.

Ordering Information ${ }^{(1-3)}$

Ordering Code	Packaging Code	Package Description
PI3V314B	B	40-pin 150-mil wide plastic BQSOP
PI3V314BE	B	Pb-free \& Green, 40-pin 150-mil wide plastic BQSOP

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. $E=$ Lead-free and Green
3. Adding an X suffix $=$ tape/reel
