

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HDMI 2.0, DisplayPort 1.2 Video Switch

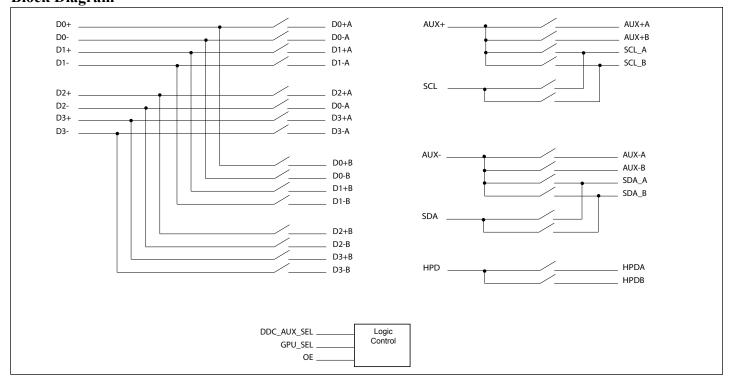
Features

- → 4-lane, 1:2 mux/demux that will support RBR, HBR1, or HBR2
- → Data rate: 3.4 Gbps to 6.0 Gbps for high data channels
- → 1-channel 1:2 mux/demux for HPD signal
- → Differential switch matrix for DP AUX and HDMI DDC
- → supports 720 Mbps high-speed DP AUX
- → -2.0 dB Insertion Loss for Dx channels @ 3 GHz
- → -3 dB Bandwidth for Dx channels: 4.1 GHz
- → Return loss for Dx channels @ 3 GHz: -12 dB
- → Low Crosstalk for high speed channels: -25 dB@ 6 Gbps
- → Low Off Isolation for high speed channels: -24dB@ 6 Gbps
- → Low channel-to-channel skew, 35ps max
- → Low Bit-to-Bit Skew, 5ps typ (between '+' and '-' bits)
- → V_{DD} Operating Range: 3.3V +/-10%
- → ESD Tolerance: 2kV HBM
- → Packaging (Pb-free & Green):
 - -50-ball TFBGA (NEE)
 - -52-pin TQFN (ZL52)

Description

Pericom Semiconductor's PI3WVR12612 is a multi-standard video switch with wide voltage range capability. It supports DisplayPort 1.2, HDMI 2.0, and emerging and proprietary standards.

PI3WVR12612 can pass high-speed signals up to 1.2 V peak-to-peak differential with a common-mode voltage from 0 to 3.4V. The wide voltage range allows DC-coupled multi-standard operation. Eliminating AC coupling capacitors saves board space and improves signal integrity for dense PCB designs.


The high speed channels can also pass 0V-3.3V CMOS signals up to 1MHz.

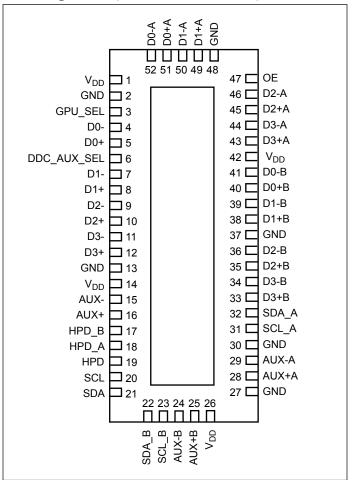
In addition to four high-speed lanes, PI3WVR12612 also switches AUX, DDC, and HPD signals.

Application

Routing of DisplayPort and HDMI signals with low signal attenuation between source and sink.

Block Diagram

Pin Assignment (50-Ball TFBGA, NEE)


D3-A	D3+A							-	
D0-B			D2-A	D1-A	D0-A		VDD	GPU_SEL	А
	D0+B	OE	D2+A	D1+A	D0+A	GND	D0+	D0-	В
	GND						DDC_ AUX_ SEL		С
D1-B	D1+B						D1+	D1-	D
D2-B	D2+B						D2+	D2-	E
D3-B	D3+B						D3+	D3-	F
	GND						GND		G
AUX+A	SCL_A	GND	AUX+B	SCL_B	GND	HPD_B	AUX+	AUX-	н
AUX-A	SDA_A	SDA	AUX-B	SDA_B	Vdd	SCL	HPD_A	HPD	J
	D2+B D3+B GND SCL_A						D2+ D3+ GND AUX+	D2-	E F G

Truth Table

	Control			Switch	Functio	n
OE	GPU_ SEL	DDC_ AUX_ SEL	D0- D3	AUX	HPD	DDC
High	Low	Low	A	AUX A	HPD A	Hi-Z
High	High	Low	В	AUX B	HPD B	Hi-Z
High	Low	High	A	DDC A	HPD A	Hi-Z
High	High	High	В	DDC B	HPD B	Hi-Z
High	Low	Medium	A	AUX A	HPD A	DDC A
High	High	Medium	В	AUX B	HPD B	DDC B
Low	x	x	Hi-Z	Hi-Z	Hi-Z	Hi-Z

→ Medium level = 1/2 VDD = 1.65V

Pin Assignment (52-Pin TQFN, ZL52)

Pin Description

pin#	pin Name	Signal Type	Description	
A1	GPU_SEL	I	switch logic control	
B1	D0-	I/O	negative differential signal 0 for COM port	
B2	D0+	I/O	positive differential signal 0 for COM port	
D1	D1-	I/O	negative differential signal 1 for COM port	
D2	D1+	I/O	positive differential signal 1 for COM port	
E1	D2-	I/O	negative differential signal 2 for COM port	
E2	D2+	I/O	positive differential signal 2 for COM port	
F1	D3-	I/O	negative differential signal 3 for COM port	
F2	D3+	I/O	positive differential signal 3 for COM port	
В3	GND	Ground	Ground	
H1	AUX-	I/O	negative differential signal for AUX COM port	
H2	AUX+	I/O	posititve differential signal for AUX COM port	
J1	HPD	I/O	HPD for COM port	
J2	HPD_A	I/O	HPD for port A	
H3	HPD_B	I/O	HPD for port B	
C8	GND	Ground	Ground	
J4	VDD	Pwr	3.3V +/-10% power supply	
G2	GND	Ground	Ground	
H6	AUX+B	I/O	positive differential signal for AUX, port B	
J6	AUX-B	I/O	negative differential signal for AUX, port B	
H9	AUX+A	I/O	positive differential signal for AUX, port A	
J9	AUX-A	I/O	negative differential signal for AUX, port A	
G8	GND	Ground	Ground	
F8	D3+B	I/O	positive differential signal 3 for portB	
F9	D3-B	I/O	negative differential signal 3 for portB	
E8	D2+B	I/O	positive differential signal 2 for portB	
E9	D2-B	I/O	negative differential signal 2 for portB	
D8	D1+B	I/O	positive differential signal 1 for portB	
D9	D1-B	I/O	negative differential signal 1 for portB	
B8	D0+B	I/O	positive differential signal 0 for portB	
В9	D0-B	I/O	negative differential signal 0 for portB	

(Continued)

pin#	pin Name	Signal Type	Description	
A8	D3+A	I/O	positive differential signal 3 for port A	
A9	D3-A	I/O	negative differential signal 3 for port A	
H4	GND	Ground		
В6	D2+A	I/O	positive differential signal 2 for port A	
A6	D2-A	I/O	negative differential signal 2 for port A	
B5	D1+A	I/O	positive differential signal 1 for port A	
A5	D1-A	I/O	negative differential signal 1 for port A	
B4	D0+A	I/O	positive differential signal 0 for port A	
A4	D0-A	I/O	negative differential signal 0 for port A	
A2	VDD	Pwr	Power	
C2	DDC_ AUX_SEL	I	switch logic control	
H5	SCL_B	I/O	DDC_clock channel for port B	
H7	GND	Ground		
Н8	SCL_A	I/O	DDC_clock channel for port A	
J5	SDA_B	I/O	DDC_data channel for port B	
J8	SDA_A	I/O	DDC_data channel for port A	
J3	SCL	I/O	DDC_clock channel for COM port	
J7	SDA	I/O	DDC_data channel for COM port	
B7	OE	I	Output enable. if OE is high, IC is enabled. If OE is low, then IC is power down and all I/Os are hi-z	

15-0175

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

, , ,	9 , ,
Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +4.2V
DC Input Voltage	0.5V to V _{DD}
High Speed Data Channel	-0.5V to 3.8V
HPD_x, SDA_x, SCL_x	-0.5V to 5.5V
DC Output Current	120mA
Power Dissipation	0.5W

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for Switching over Operating Range ($T_A = -40$ °C to +105°C, $V_{DD} = -40$ °C to +105°C, + $3.3V \pm 10\%$

Parameter	Description	Test Conditions(1)	Min	Typ ⁽²⁾	Max	Units
V _{IH}	Input HIGH Voltage (OE, GPU_SEL)	Guaranteed HIGH level	1.5			
VIL	Input LOW Voltage (OE, GPU_SEL)	Guaranteed LOW level			0.75	
V _{IH}	Input HIGH Voltage (DDC_AUX_SEL)	Guaranteed HIGH level	2.65		V_{DD}	
V _{IM}	Input Mid-Level Voltage (DDC_AUX_ SEL)	Guaranteed MID level	V _{DD} /2- 300mV	V _{DD} /2	V _{DD} /2+ 300mV	V
v_{IL}	Input LOW Voltage (DDC_AUX_SEL)	Guaranteed LOW level	-0.5		0.6	
V _{IK}	Clamp Diode Voltage (HS Channel)	$V_{\mathrm{DD}} = \mathrm{Max.}, I_{\mathrm{IN}} = -18\mathrm{mA}$		-1.6V	-1.8	
V _{IK}	Clamp Diode Voltage (Aux, Cntrl)	$V_{\mathrm{DD}} = \mathrm{Max.}, I_{\mathrm{IN}} = -18\mathrm{mA}$		-0.7	-1.5	
IIH	Input HIGH Current (All Control Pins)	$V_{DD} = Max., V_{IN} = V_{DD}$			±5	
IIL	Input LOW Current (All Control Pins)	V _{DD} = Max., V _{IN} = GND			±5	μΑ
I _{OFF_SB}	I/O leakage when part is off for sideband signals only (DDC, AUX, HPD)	$V_{DD} = 0V$, $V_{INPUT} = 0V$ to 3.6V			20	W11
R _{ON_HS}	On resistance between input to output for high speed signals	$\begin{split} V_{INPUT,cm} &= 0V \text{ to } 3.4V, \\ V_{INPUT,diff} &< 1.2V_{p-p,diff}, \\ V_{DD} &= 3.0V, I_{INPUT} = 20mA \end{split}$		11		Ohm
R _{ON_AUX}	On resistance between input to output for side-band signals (AUX)	$V_{\mathrm{DD}} = 3.0 \mathrm{V}$, $V_{\mathrm{input}} = 0$ to $3.3 \mathrm{V}$, $I_{\mathrm{INPUT}} = 20 \mathrm{mA}$		7		Ohm
R _{ON_DDC}	On resistance between input to output for DDC channel	$V_{\mathrm{DD}} = 3.0 \mathrm{V}$, $V_{\mathrm{input}} = 0 \mathrm{V}$, $I_{\mathrm{INPUT}} = 20 \mathrm{mA}$		12		Ohm
R _{ON_HPD}	On resistance between input to output for HPD channel	V_{DD} = 3.0V, Vinput = 0 to 3.0V, I_{INPUT} = 20mA		7		Ohm
V _{AUX_SS}	Signal Swing Tolerance in Aux path	$V_{DD} = 3.0V$	-0.5		5.5	V
V_{HPD_I}	Input voltage on HPD path				5.5	V
V _{HPD_O}	Output voltage tolerance on HPD path	HPD input from 3.3V to 5.25V		3.3	3.6	V
V _{SDA_X}	Input Voltage on SDA path			5		V
V _{PASS} (SDA_X)	Switch output voltage tolerance input	V _{in} = 5.25V, Ii = 100uA, V _{DD} = 3.3V	1.8	2.2	2.5	V
V_{SCL_X}	Input Voltage on SCL path			5		V
V _{PASS} (SCL_X)	Switch output voltage tolerance input	V _{in} = 5.25V, Ii = 100uA, V _{DD} = 3.3V	1.8	2.2	2.5	V
All trademarks are pr	roperty of their respective owners. 15-0175	5	www.perio	com.com		12/03/15

Power Supply Characteristics ($T_A = -40^{\circ}\text{C} \text{ to } +105^{\circ}\text{C}$)

Parameter	ameter Description Test Conditions ⁽¹⁾		Min	Typ(2)	Max	Units
I_{DD}	Power Supply Current	V_{DD} = 3.3V, V_{IN} = GND or V_{DD}		1	3	mA
$I_{ m DD,Off}$	Power Supply Current, Disabled	V_{DD} = 3.3V, V_{IN} = GND or V_{DD} , V_{OE} < V_{IL}		1	50	μΑ

^{1.} For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

Dynamic Electrical Characteristics over Operating Range ($T_A = -40^{\circ}$ to $+105^{\circ}$ C, $V_{DD} = 3.3$ V $\pm 10\%$)

Parameter	Description	Test Conditions ¹	- 7	Min	Typ ²	MAX	Units
			f= 3.0 GHz		-25	-22	
X _{TALK}	Crosstalk on High Speed Channels	See Fig. 1 for Measurement Setup	f= 2.7 GHz		-28	-25	
	licis	ment setup	f = 1.35 GHz		-32	-28	
		See Fig. 2 for Measure-	f= 3.0 GHz		-24	-20	dB
O _{IRR}	OFF Isolation on High Speed Channels	ment Setup,	f= 2.7 GHz		-25	-22	
	Oldinicis		f = 1.35 GHz		-30	-27	
_	Differential Insertion Loss on	@6.0Gbps (see figure 4)		-2.3	-2.0		1D
I_{LOSS}	High Speed Channels	@5.4Gbps (see figure 3)		-2.0	-1.8		dB
D.	Differential Return Loss on high	@3.0GHz (6.0Gbps)			-12	-11	מנ
R _{loss}	speed channels	@ 2.7GHz (5.4Gbps)			-14	-12.5	dB
BW_Dx±	Bandwidth -3dB for Main high speed path (Dx±)	See figure 3		3.7	4.1		GHz
BW_AUX/ HPD	-3dB BW for AUX, DDC, and HPD signals	See figure 3		1.35	1.5		GHz

^{1.} For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

Switching Characteristics ($T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$, $V_{DD} = 3.3V \pm 10\%$)

Parameter	Description		Тур.	Max.	Units
T_{pd}	Propagation delay (input pin to output pin) on Dx± channels		80		ps
t _{b-b}	Bit-to-bit skew within the same differential pair of Dx± channels		5	7	ps
t _{ch-ch}	Channel-to-channel skew of Dx± channels			35	ps
Tsw a-b	time it takes to switch from port A to port B			0.1	us
Tsw b-a	time it takes to switch from port B to port A			0.1	us
Tstartup	Vdd valid to channel enable			10	us
Twakeup	Enabling output by changing OE from low to High			10	us

^{2.} Typical values are at V_{DD} = 3.3V, T_A = 25°C ambient and maximum loading.

^{2.} Typical values are at V_{DD} = 3.3V, T_A = 25°C ambient and maximum loading.

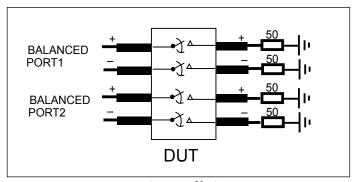


Fig 1. Crosstalk Setup

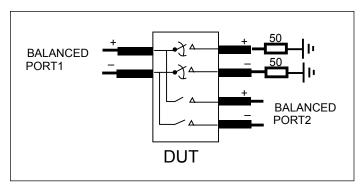


Fig 2. Off-isolation setup

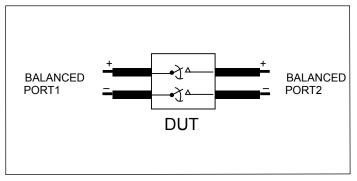
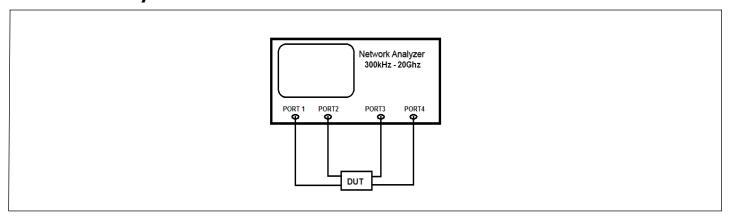



Fig 3. Differential Insertion Loss

Test Circuit for Dynamic Electrical Characteristics

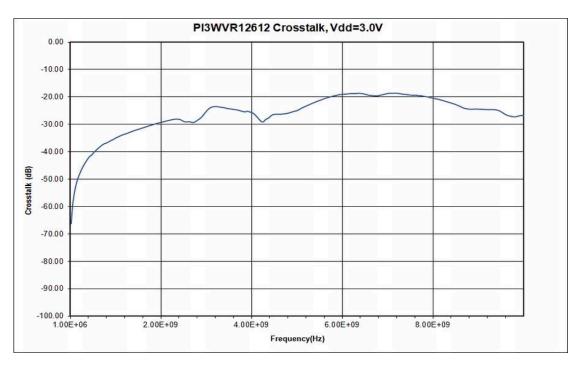


Fig 4. Crosstalk

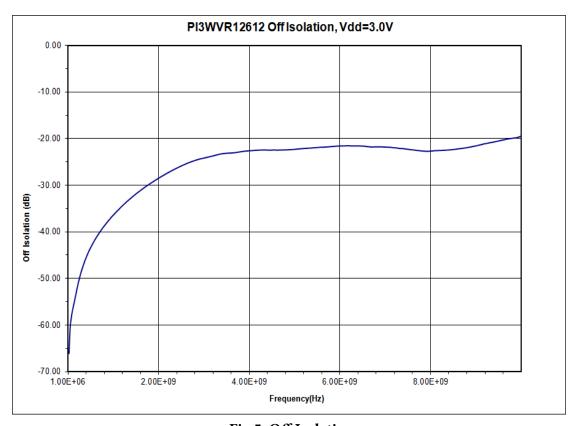


Fig 5. Off Isolation

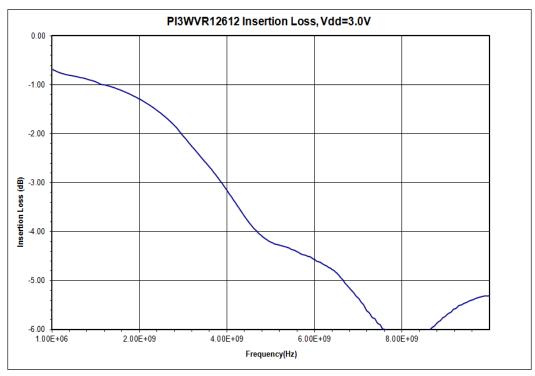


Fig 6. Insertion Loss

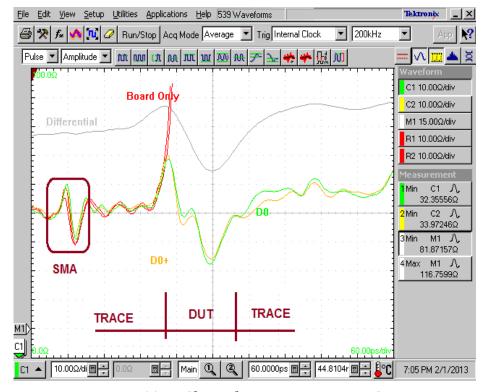


Fig 7. TDR Channel D0, VDD= 3.0V, 25C

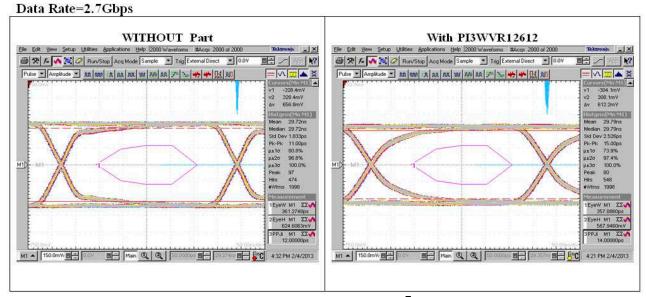


Fig 8. Differential output Eye at Input signal is a 2⁷-1 PRBS, Vdd=3.0V, 25C, Input swing is 800mV differential

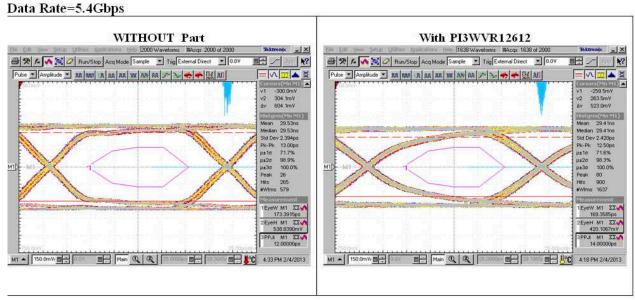
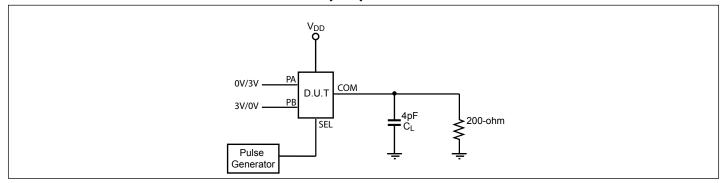
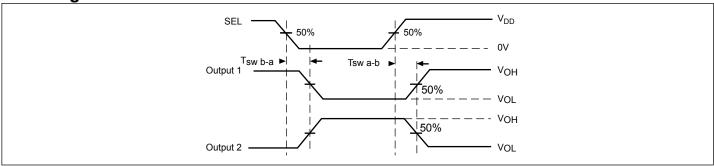



Fig 9. Differential output Eye at Input signal is a 2⁷-1 PRBS, Vdd=3.0V, 25C, Input swing is 800mV differential

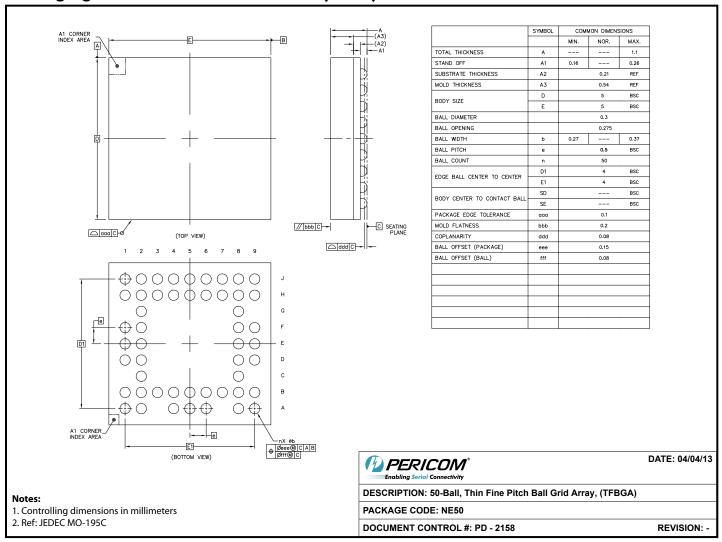
www.pericom.com


Test Circuit for Electrical Characteristics(1-5)

Notes:

- 1. C_L = Load capacitance: includes jig and probe capacitance.
- 2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- 3. All input impulses are supplied by generators having the following characteristics: $PRR \le MHz$, $Z_O = 50\Omega$, $t_R \le 2.5ns$, $t_F \le 2.5ns$.
- 4. The outputs are measured one at a time with one transition per measurement.

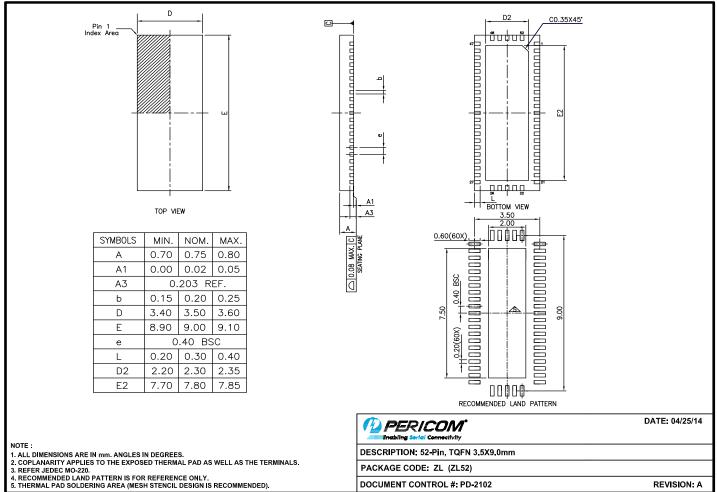
Switching Waveforms


Voltage Waveforms Enable and Disable Times

Test Condition

Output 1 Test Conditon	Output 2 Test Conditon
PA = Low	PA = High
PB = High	PB = Low

Packaging Mechanical: 50-Ball TFBGA (NE50)



13-0150

15-0175

Packaging Mechanical: 52-Pin TQFN (ZL52)

14-0122

Note:

For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI3WVR12612NEE	NE	50-Pin, Thin Fine Pitch Ball Grid Array (TFBGA)
PI3WVR12612NEEX	NE	50-Pin, Thin Fine Pitch Ball Grid Array (TFBGA), Tape & Reel
PI3WVR12612ZLE	ZL	52-Pin, 3.5 x 9.0 mm (TQFN)
PI3WVR12612ZLEX	ZL	52-Pin, 3.5 x 9.0 mm (TQFN), Tape & Reel

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- · Adding an "X" at the end of the ordering code denotes tape and reel packaging

Pericom Semiconductor Corporation • 1-800-435-2336

13

15-0175