

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Precision Wide-Bandwidth Analog Switch

Features

- · Rail-To-Rail operation
- Pin-compatible with 3125 Bus Switch & 74 series 125
- Single-Supply operation: 2V to 6V
- Low On-Resistance: 8Ω typical @ 5V
- Tight match between channels: 0.9Ω typical
- R_{ON} flatness: 3Ω typical
- Low power consumption: 0.5μ-ohm typical
- High Speed, $T_{ON} = 8$ ns typical
- High-current channel capability: >100mA
- Wide bandwidth: >200 MHz
- Packaging (Pb-free & Green available):
 - -14-pin SOIC (W)
 - -16-pin QSOP (Q)

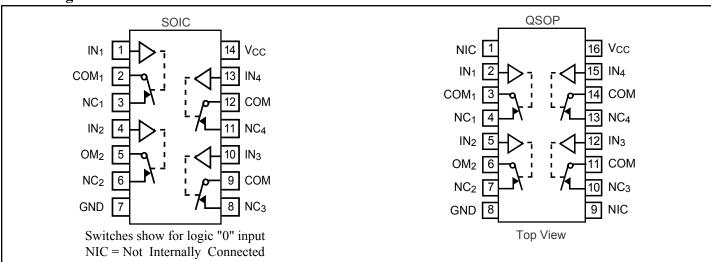
Applications

- Instrumentation, ATE
- · Audio Switching and Routing
- Telecommunications Systems
- Data Communications
- · Battery-Powered Systems
- · Replaces Mechanical Relays

Description

Pericom Semiconducto's PI5A101 is an all-purpose analog switch designed for single-supply operation from +2V to +6V. This switch is ideal for audio, video, and data switching and routing.

The PI5A101 is a quad SPST (single-pole, single-throw) NC (normally closed) function.


When on, each switch conducts current equally well in either direction. When off, they block voltages up to the power-supply rails.

The PI5A101 is fully specified with +5V and +3.3V supplies. With +5V the R_{ON} is 8Ω typical, making it ideal for replacing mechanical relays in data communications, test equipment, and instrumentation applications. Matching between channels is better than $2\Omega.$ R_{ON} flatness is better than 4Ω over the specified range.

These analog switches also offer wide bandwidth (>200 MHz high speed (T_{ON} >15ns), and low charge injection (Q >10pC).

The PI5A101 is available in the narrow-body 14-pin small SOIC and 16-pin QSOP packages for operation over the industrial (-40°C to +85°C) temperature range.

Pin Configurations

1

Truth Table

Logic	Switch
0	ON
1	OFF

Electrical Specifications - Single +5V Supply $(V_{CC} = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units
Analog Switch					-		
Analog Signal Range ⁽³⁾	V _{ANALOG}		Full	0		V _{CC}	V
On-Resistance	R _{ON}		25		8	10	
On-Resistance	KON	$V_{CC} = 4.5V,$	Full		15	18	
On-Resistance		$I_{COM} = -30 \text{mA},$ $V_{NO} \text{ or } V_{NC} = +2.5 \text{V}$	25		0.9	2	Ω
Match Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	v _{NO} or v _{NC} = ±2.3 v	Full			4	
On-Resistance		$V_{CC} = 5V$,	25		3	4	Ì
Flatness ⁽⁵⁾	$R_{FLAT(ON)}$	$I_{COM} = -30 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 1 \text{V}, 2.5 \text{V}, 4 \text{V}$	Full			5	
(6)	I _{NO(OFF)} or	$V_{CC} = 5.5V$,	25		0.05		
	I _{NC(OFF)}	$V_{COM} = 0V,$ $V_{NO} \text{ or } V_{NC} = 4.5V$	Full	-80		80	
COM Off Leakage		$V_{CC} = 5.5V,$	25		0.05		
Current ⁽⁶⁾	$I_{COM(OFF)}$	$V_{COM} = +4.5V,$ V_{NO} or $V_{NC} = \pm 0V$	Full	-80		80	nA
COM On Leakage		$V_{CC} = 5.5V,$	25		0.07		Ì
Current ⁽⁶⁾	I _{COM(ON)}	$V_{COM} = +4.5V$ V_{NO} or $V_{NC} = +4.5V$	Full	-80		80	
Logic Input							
Input High Voltage	V _{IH}	Guaranteed logic High Level		2			V
Input Low Voltage	V _{IL}	Guaranteed logic Low Level					\ \
Input Current with Voltage High	I _{INH}	$V_{IN} = 2.4V$, all others = $0.8V$	Full			0.8	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V		-1	0.005	1	μA

Electrical Specifications - Single +5V Supply $(V_{CC} = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$ (continued)

Parameter	Symbol	Conditions	Temp.(°C)	Min.(1)	Typ.(2)	Max. ⁽¹⁾	Units
Dynamic							
Turn-On Time	torr		25		8	15	
Turn-On Time	$t_{ m ON}$	- V _{CC} = 5V, see figure 1	Full			20	ns
Turn-Off Time	torr		25		3.5	7	
Tuni-On Time	$t_{ m OFF}$		Full			10	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2			7	10	pC
Off Isolation	O _{IRR}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 10MHz$, see figure 3			-55		dB
Crosstalk ⁽⁸⁾	I _{COM(OFF)}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 10MHz$, see figure 4	25		-92		
NC or NO Capacitance	C _(OFF)	f = 1kHz, see figure 5	1		8		pF
COM Off Capacitance	C _{COM(OFF)}				8		
COM On Capacitance	C _{COM(ON)}	f = 1kHz, see figure 6			14		
3-dB Bandwidth	BW	$R_L = 10k\Omega$	Full		230		MHz
Distortion ⁽⁹⁾	D		Full		0.03		%
Supply							
Power-Supple Range	V _{CC}			2		6	V
Positve Supply Current	I_{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or $V+$, All Channels on or off	Full			1	μΑ

Absolute Maximum Ratings

I	Voltages Referenced to GND
	V_{CC} 0.5V to +7V
l	$V_{IN},V_{COM},V_{NC}{}^{(1)}$ –0.5V to V_{CC} +2V
l	or 30mA, whichever occurs first
l	Current (any terminal except COM, NO, NC)30mA
l	Current: COM, NO, NC (pulsed at 1ms, 10% duty cycle)120mA $$

Thermal Information

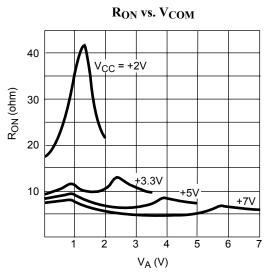
Continuous Power Dissipation
Narrow SO & QSOP (derate 8.7mW/°C above +70°C)650mW
Storage Temperature65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

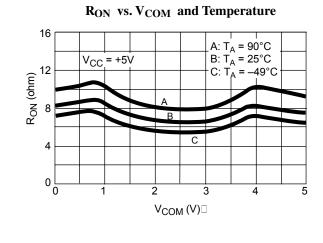
Notes

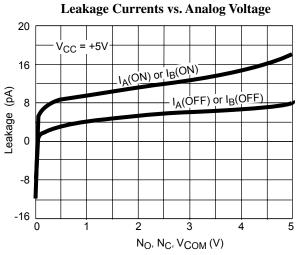
- 1. Signals on NC, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.
- 2. Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

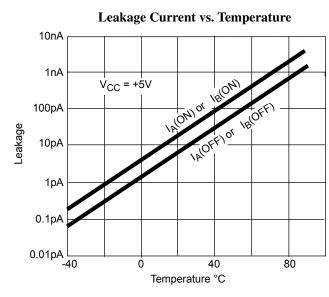
Electrical Specifications-Single +3.3V Supply $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

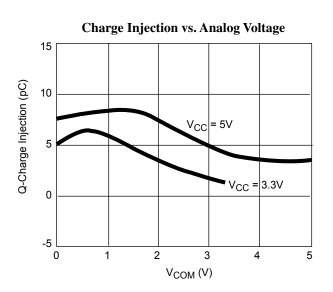
		11 7 (66		11 111			
Parameter	Symbol	Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch	Analog Switch						
Analog Signal Range ⁽³⁾	V _{ANALOG}		Full	0		V _{CC}	V
On-Resistance	D		25		7.2	18	
On-Resistance	R _{ON}	$V_{CC} = 3V$,	Full			28	
On-Resistance Match Be-	$\Delta R_{ m ON}$	$I_{COM} = -30 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 1.5 \text{V}$	25		0.2	2	
tween Channels ⁽⁴⁾	ΔΚΟΝ	NO NO	Full			4	Ω
(2.5)		$V_{CC} = 3.3V$,	25		2.72	10	
On-Resistance Flatness ^(3,5)	R _{FLAT(ON)}	$I_{COM} = -30 \text{mA},$ V_{NO} or $V_{NC} = 0.8 \text{V}, 2.5 \text{V}$	Full			12	
Dynamic			-	-	-	-	
Turn-On Time			25		7	25	ns
	t _{ON}	$V_{CC} = 3.3V$,	Full	ıll		40	
	4	V_{NO} or $V_{NC} = 1.5V$, see figure 1	25		1	12	
Turn-Off Time	t _{OFF}		Full			20	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		1.6	10	рC
Supply							
Positve Supply Current	I _{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC} , All Channels on or off	Full			1	μΑ

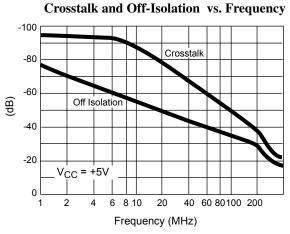

Notes:

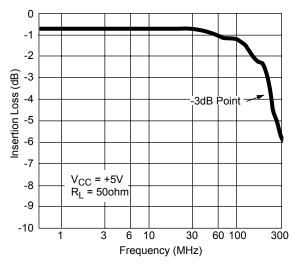

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

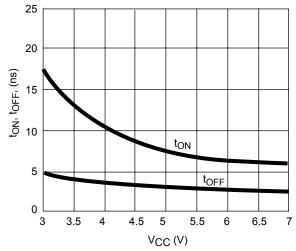

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} MAX R_{ON} MIN$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} V_B / V_A$. See Figure 3.
- 8. Between any two switches. See Figure 4.
- 9. $D = R_{FLAT(ON)}/R_L$.



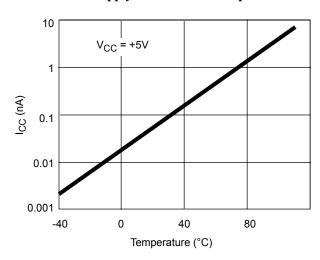

Typical Operating Characteristics ($T_A = +25^{\circ}C$, unless otherwise noted)

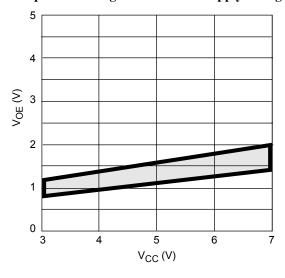


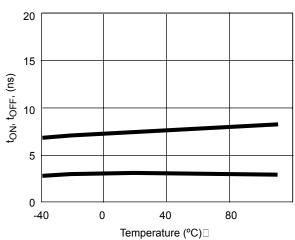


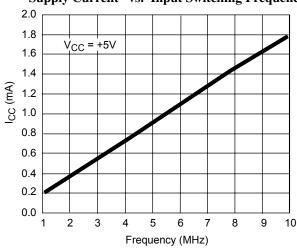


5 PS7079F 09/22/04


Insertion Loss vs. Frequency


Switching Times vs. V_{CC}


Supply Current vs. Temperature


Input Switching Threshold vs. Supply Voltage

Switching Times vs. Temperature

Supply Current vs. Input Switching Frequency

Test Circuits/Timing Diagrams

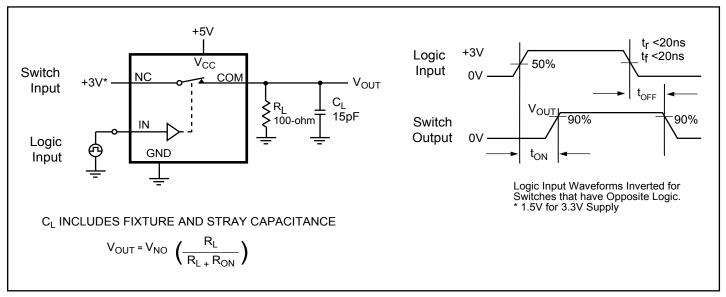


Figure 1. Switching Time

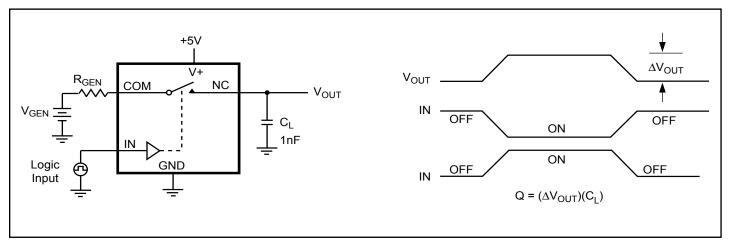


Figure 2. Charge Injection

7

PS7079F 09/22/04

Test Circuits/Timing Diagrams (continued)

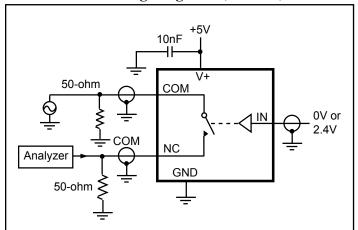


Figure 3. Off Isolation

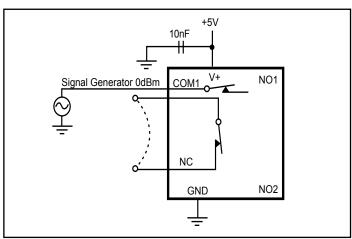


Figure 4. Crosstalk

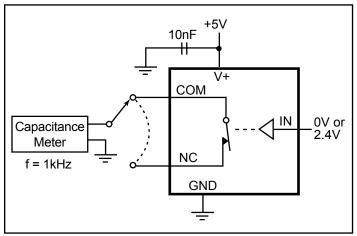


Figure 5. Channel-Off Capacitance

Figure 6. Channel-On Capacitance

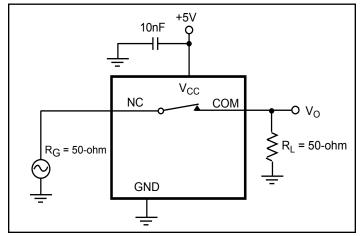
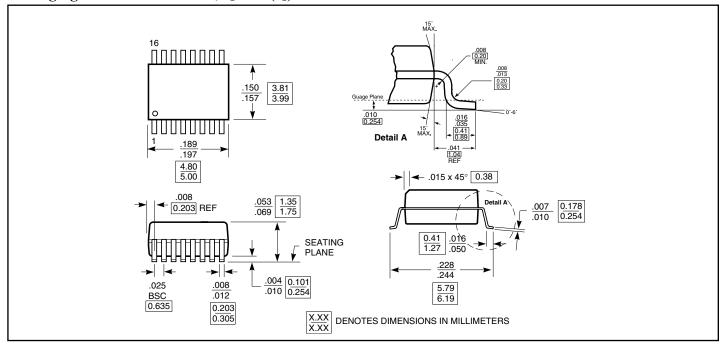
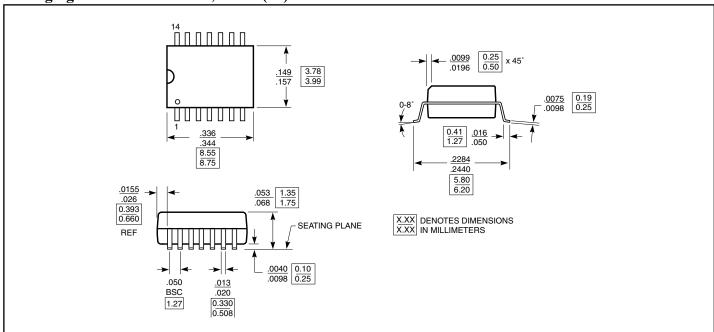



Figure 7. Bandwidth


PS7079F 09/22/04

Packaging Mechanical: 16-Pin, QSOP (Q)

Packaging Mechanical: 14-Pin, SOIC (W)

Ordering Information

Ordeing Code	Package Code	Package Description
PI5A101Q	Q	16-pin, QSOP
PI5A101QE	Q	Pb-free & Green, 16-pin, QSOP
PI5A101W	W	14-pin SOIC
PI5A101WE	W	Pb-free & Green, 14-pin SOIC

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/