

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Single-Supply Operation (+2V to +6V)
- Rail-to-Rail Analog Signal Dynamic Range
- Low On-Resistance (7.2-ohm with 5V supply) Minimizes Distortion and Error Voltages
- On-Resistance Flatness, 3-ohm typ.
- Low Charge Injection Reduces Glitch Errors. Q = 1.6pC typ.
- High Speed. $t_{ON} = 7$ ns typ.
- Wide –3dB Bandwidth: 326 MHz
- High-Current Channel Capability: >100mA
- TTL/CMOS Logic Compatible
- Low Power Consumption (5µW typ.)
- Packaging (Pb-free & Green Available)
- 8-pin, 118 mil plastic MSOP (U)

Applications

- · Audio, Video Switching and Routing
- Battery-Powered Communication Systems
- Computer Peripherals
- Telecommunications
- Portable Instrumentation
- Mechanical Relay Replacement
- Cell Phones
- PDAs

Dual, Wide Bandwidth Analog Switches

Description

The PI5A127 is a dual SPST (single-pole single-throw) analog switches designed for single supply operation. These high-precision devices are ideal for low-distortion audio, video, signal switching and routing.

The PI5A127 is a normally closed (NC) switch.

Each switch conducts current equally well in either direction when on. When off, they block voltages up to V+.

These switches are fully specified with +5V and +3.3V supplies. With +5V, they guarantee <10 -ohm ON-resistance. On-resistance matching between channels is within 2-ohm. On-resistance flatness is less than 5-ohm over the specified range. These switches also guarantee fast switching speeds ($t_{\rm ON}$ < 20ns).

These products are available in 8-pin SOIC and MSOP plastic packages for operation over the industrial temperature range $(-40^{\circ}\text{C to } +85^{\circ}\text{C})$.

Functional Diagrams, Pin Configurations and Truth Tables

09-0006 1 PS8328F 11/18/09

Absolute Maximum Ratings

Voltages Referenced to GND
V_{+} 0.5V to +7V
$V_{IN}, V_{COM}, V_{NC}, V_{NO}$ (Note 1)0.5V to V+ +2V
or 30mA, whichever occurs first
Current (any terminal except COM,NO,NC)30mA
Current, COM, NO, NC
(Pulsed at 1ms, 10% duty cycle)120mA

Thermal Information

Continuous Power Dissipation	
-6 (derate 7mW/°C above +70°C)	550mW
Storage Temperature	–65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1:

Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5V Supply $(V+ = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

	INH INL						
Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽²⁾	Typ. ⁽¹⁾	Max.(2)	Units
Analog Switch	Analog Switch						
Analog Signal Range ⁽³⁾	V _{ANALOG}		Full	0		V+	V
On Bosistanos	D	25	25		7.2	10	
On Resistance	R _{ON}	$V+=4.5V$, $I_{COM}=-30mA$,	Full			12	
On-Resistance Match	DD	V_{NO} or $V_{NC} = +2.5V$	25		0.20	2	W
Between Channels ⁽⁴⁾	DR _{ON}		Full			4	
On-Resistance Flatness ⁽⁵⁾	R _{FLAT(ON)}	$V+=5V,$ $I_{}=-30mA.$	25		2.72	3.5	
	FLAT(ON)	$I_{COM} = -30 \text{mA},$ V_{NO} or $V_{NC} = 1 \text{V}, 2.5 \text{V}, 4 \text{V}$	Full			4	
NO or NC Off Leakage	I _{NO(OFF) or}	$V + = 5.5V, V_{COM} = 0V,$	25		0.18		
Current ⁽⁶⁾	I _{NC(OFF)}	V_{NO} or $V_{NC} = 4.5V$	Full	-200		200	nA
COM Off Leakage	I _{COM(OFF)}	V+ = 5.5V, $V_{COM} = + 4.5V, V_{NO}$	25		0.20		
Current ⁽⁶⁾	COM(OFF)	or $V_{NC} = \pm 0V$	Full	-200		200	
COM On Leakage	,	$V+=5.5V$, $V_{COM}=+4.5V$	25		0.20		
Current ⁽⁶⁾	I _{COM(ON)}	$V + = 5.5V$, $V_{COM} = +4.5V$ V_{NO} or $V_{NC} = +4.5V$	Full	-200		200	

Notes:

- 1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} \max R_{ON} \min$.
- 5. Flatness is defined as the difference between the maximum and minimum value of ON-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

09-0006 2 PS8328F 11/18/09

$\textbf{Electrical Specifications - Single +5V Supply} \; (V + = + \; 5V \; \pm 10\%, \; GND = 0V, \; V_{INH} = 2.4V, \; V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Logic Input				1	1		1
Input High Voltage	V _{IH}	Guaranteed logic High Level		2			
Input Low Voltage	V _{IL}	Guaranteed logic Low Level $V_{IN} = 2.4V$, all others = 0.8V $V_{IN} = 0.8V$, all others = 2.4V				0.8	
Input Current with Voltage High	I _{INH}		Full	-1	0.005	1	V
Input Current with Voltage Low	I _{INL}			-1	0.005	1	1
Dynamic							
Turn-On Time	4		25		7	15	ns
Turn-On Time	t _{ON}	V - 5V Figure 1	Full		2	20	
Turn-Off Time	4	$V_{\rm CC} = 5$ V, Figure 1	25		1	7	
rum-on rime	t _{OFF}		Full			10	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, \text{Vgen} = 0 \text{V},$ $Rgen = 0\Omega, \text{Figure 2}$			1.6	10	pC
Off Isolation	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, f = 10MHz, Figure 3			-43		in.
Crosstalk	Xtalk	$R_L = 50\Omega$, $C_L = 5pF$, f = 10 MHz, Figure 4	25		-43		- dB
NC or NO Capacitance	C(off)	f = 11-11 = Figure 5			5.5		
COM Off Capacitance	Ccom(off)	f = 1kHz, Figure 5			5.5		pF
COM On Capacitance	Ccom(on)	f = 1kHz, Figure 6			13		
-3dB Bandwidth	BW	$R_L = 50\Omega$, Figure 7	Full		326		MHz
Distortion	D	$R_L = 10$			0.2		%

continued

Parameter	Symbol	Conditions	Temp(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max.(1)	Units
Supply							
Power-Supply Range	V+			2		6	V
Positve Supply Current	I+	$V+=5.5V$, $V_{IN}=0V$ or V_{CC} , $V+$ All Channels on or off	Full			1	μΑ

Notes:

- 1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.

09-0006 4 PS8328F 11/18/09

$\textbf{Electrical Specifications - Single +3.3V Supply} \ (V = +3.3V \pm 10\%, \ GND = 0V, \ V_{INH} = 2.4V, \ V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch	Analog Switch						
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V+	V
On-Resistance	R _{on}	$V+ = 3V, I_{COM} = -30mA,$ $V_{NO} \text{ or } V_{NC} = 1.5V$		12	18		
	ON	v_{NO} or $v_{NC} = 1.5 v$	Full			22	
On-Resistance Match			25		1	1	Ω
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V + = 3.3V$, $I_{COM} = -30 \text{mA}$,	Full		2	2	
On-Resistance Flat-	D	V_{NO} or $V_{NC} = 0.8V$, 2.5V	25	3.5	4		
nesS ^(3,5)	R _{FLAT(ON)}		Full			5	
Dynamic							
Turn-On Time	4	25		14	25		
	t _{ON}	$V+=3.3V, V_{NO}$	Full	Full		40] nc
Turn-Off Time	+	or $V_{NC} = 1.5V$, Figure 1	25 4.5	12	ns		
Turn-On Time	t _{OFF}		Full		20		
Charge Injection ⁽³⁾	Q	$C_L = 1nF, V_{GEN} = 0V,$ $R_{GEN} = 0V, Figure 2$	25		1.3	10	pC
Supply							
Supply Current	I+	$V+=3.6V$, $V_{IN}=0V$ or $V+$ All Channels on or off	Full			1	μА

Notes:

- 1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. ΔR_{ON}=R_{ON} max R_{ON} min.
 5. Flatness is defined as the difference between the maximum and minimum value of ON-resistance measured.

5 PS8328F 11/18/09 09-0006

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

Figure 3. Off Isolation

Figure 4. Crosstalk

Figure 5. Channel-Off Capacitance

Figure 6. Channel-On Capacitance

Figure 7. Bandwidth

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI5A127UX	U	8-pin MSOP
PI5A127UEX	U	Pb-free & Green, 8-pin MSOP (Tape/Reel)

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- Adding an X Suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com