: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Dual, Wide Bandwidth Analog Switches

Features

- Single-Supply Operation (+2V to +6 V)
- Rail-to-Rail Analog Signal Dynamic Range
- Low On-Resistance (7.2-ohm with 5V supply) Minimizes Distortion and Error Voltages
- On-Resistance Flatness, 3-ohm typ.
- Low Charge Injection Reduces Glitch Errors. Q = 1.6pC typ.
- High Speed. $\mathrm{t}_{\mathrm{ON}}=7 \mathrm{~ns}$ typ.
- Wide - 3 dB Bandwidth: 326 MHz
- High-Current Channel Capability: $>100 \mathrm{~mA}$
- TTL/CMOS Logic Compatible
- Low Power Consumption ($5 \mu \mathrm{~W}$ typ.)
- Packaging (Pb-free \& Green Available) - 8-pin, 118 mil plastic MSOP (U)

Applications

- Audio, Video Switching and Routing
- Battery-Powered Communication Systems
- Computer Peripherals
- Telecommunications
- Portable Instrumentation
- Mechanical Relay Replacement
- Cell Phones
- PDAs

Description

The PI5A127 is a dual SPST (single-pole single-throw) analog switches designed for single supply operation. These high-precision devices are ideal for low-distortion audio, video, signal switching and routing.
The PI5A127 is a normally closed (NC) switch.
Each switch conducts current equally well in either direction when on. When off, they block voltages up to $\mathrm{V}+$.
These switches are fully specified with +5 V and +3.3 V supplies. With +5 V , they guarantee <10-ohm ON-resistance. On-resistance matching between channels is within 2 -ohm. On-resistance flatness is less than 5 -ohm over the specified range. These switches also guarantee fast switching speeds ($\mathrm{t}_{\mathrm{ON}}<20 \mathrm{~ns}$).
These products are available in 8-pin SOIC and MSOP plastic packages for operation over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

Functional Diagrams, Pin Configurations and Truth Tables

Absolute Maximum Ratings
Voltages Referenced to GND
V_{+} \qquad -0.5 V to +7 V
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}$ (Note 1) \qquad -0.5 V to $\mathrm{V}++2 \mathrm{~V}$. or 30 mA , whichever occurs first Current (any terminal except COM,NO,NC) \qquad 30 mA

Current, COM, NO, NC \qquad 100 mA
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) \qquad 120 mA

Thermal Information

Continuous Power Dissipation
$-6\left(\right.$ derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 550 mW

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$

Note 1:

Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30 mA .

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5V Supply $\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(2)}$	Typ. ${ }^{(1)}$	Max. ${ }^{(2)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0		V+	V
On Resistance	$\mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{No}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.5 \mathrm{~V} \end{aligned}$	25		7.2	10	W
			Full			12	
On-Resistance Match Between Channels ${ }^{(4)}$	$\mathrm{DR}_{\text {ON }}$		25		0.20	2	
			Full			4	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\text {FLat(on) }}$	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{Com}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {No }} \text { or } \mathrm{V}_{\mathrm{Nc}}=1 \mathrm{~V}, 2.5 \mathrm{~V}, 4 \mathrm{~V} \end{aligned}$	25		2.72	3.5	
			Full			4	
NO or NC Off Leakage Current ${ }^{(6)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{NO}(\mathrm{OFF}) \text { or }} \\ & \mathrm{I}_{\mathrm{NC}(\mathrm{OFF})} \end{aligned}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$	25		0.18		nA
			Full	-200		200	
COM Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {Сом(OFF) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CoM}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{No}} \\ & \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 0 \mathrm{~V} \end{aligned}$	25		0.20		
			Full	-200		200	
COM On Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {COM(ON) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=+4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+4.5 \mathrm{~V} \end{aligned}$	25		0.20		
			Full	-200		200	

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of ON -resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.

Electrical Specifications - Single +5V Supply ($\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, G \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$)

Parameter	Symbol	Conditions	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Logic Input							
Input High Voltage	V_{IH}	Guaranteed logic High Level	Full	2			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed logic Low Level				0.8	
Input Current with Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-1	0.005	1	
Input Current with Voltage Low	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-1	0.005	1	

Turn-On Time	t_{ON}	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, Figure 1	25	7	15	ns
			Full		20	
Turn-Off Time	${ }^{\text {OFF }}$		25	1	7	
			Full		10	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \text { Vgen }=0 \mathrm{~V}, \\ & \text { Rgen }=0 \Omega, \text { Figure } 2 \end{aligned}$	25	1.6	10	pC
Off Isolation	OIRR	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=10 \mathrm{MHz}, \text { Figure } 3 \end{aligned}$		-43		dB
Crosstalk	Xtalk	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ \mathrm{f}=10 \mathrm{MHz}, \text { Figure } 4 \end{gathered}$		-43		
NC or NO Capacitance	C(off)	$\mathrm{f}=1 \mathrm{kHz}$, Figure 5		5.5		pF
COM Off Capacitance	Ccom(off)			5.5		
COM On Capacitance	Ccom(on)	$\mathrm{f}=1 \mathrm{kHz}$, Figure 6		13		
-3dB Bandwidth	BW	$R_{L}=50 \Omega$, Figure 7	Full	326		MHz
Distortion	D	$\mathrm{R}_{\mathrm{L}}=10$		0.2		\%

continued

Parameter	Symbol	Conditions	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Supply							
Power-Supply Range	V+		Full	2		6	V
Positve Supply Current	I+	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}+ \\ & \text { All Channels on or off } \end{aligned}$				1	$\mu \mathrm{A}$

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.

Electrical Specifications - Single +3.3V Supply ($\mathrm{V}+=+3.3 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$)

Parameter	Symbol	Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	$\mathrm{V}_{\text {Analog }}$			0		V+	V
On-Resistance	$\mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=3 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{No}} \text { or } \mathrm{V}_{\mathrm{Nc}}=1.5 \mathrm{~V} \end{aligned}$	25		12	18	Ω
			Full			22	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{I}_{\text {Сом }}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {No }} \text { or } \mathrm{V}_{\mathrm{Nc}}=0.8 \mathrm{~V}, 2.5 \mathrm{~V} \end{aligned}$	25		1	1	
			Full			2	
On-Resistance Flatness ${ }^{(3,5)}$	$\mathrm{R}_{\text {FLat(on) }}$		25		3.5	4	
			Full			5	
Dynamic							
Turn-On Time	$\mathrm{t}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \\ & \text { or } \mathrm{V}_{\mathrm{Nc}}=1.5 \mathrm{~V} \text {, Figure } 1 \end{aligned}$	25		14	25	
			Full			40	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		25		4.5	12	
			Full			20	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \mathrm{~V} \text {, Figure } 2 \end{aligned}$	25		1.3	10	pC
Supply							
Supply Current	I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+$ All Channels on or off	Full			1	$\mu \mathrm{A}$

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of ON-resistance measured.

Test Circuits/Timing Diagrams

C_{L} INCLUDES FIXTURE AND STRAY CAPACITANCE

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{NO}}\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{ON}}}\right)
$$

LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE OPPOSITE LOGIC

* 1.5V FOR 3.3V SUPPLY

Figure 1. Switching Time

Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

Figure 3. Off Isolation

Figure 5. Channel-Off Capacitance

Figure 4. Crosstalk

Figure 6. Channel-On Capacitance

Figure 7. Bandwidth

(4) PERICOM
 Pericom Semiconductor Corporation 3545 N. 1st Street, San Jose, CA 95134
 1-800-435-2335 • www.pericom.com

Notes:

1) Controlling Dimensions inMillimeters
2) Ref. JEDEC MO-187E/AA

Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI5A127UX	U	8-pin MSOP
PI5A127UEX	U	Pb-free \& Green, 8-pin MSOP (Tape/Reel)

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- Adding an X Suffix = Tape/Reel

