: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

PI5A3158B
 Low Voltage Dual SPDT Analog Switch 2:1 Mux/Demux Bus Switch

Features

- CMOS Technology for Bus and Analog Applications
- Low On-Resistance: 8Ω at 3.0 V
- Wide V_{CC} Range: 1.65 V to 5.5 V
- Rail-to-Rail Signal Range
- Control Input Overvoltage Tolerance: 5.5V(Min)
- Fast Transition Speed: 2ns at 5.0 V
- High Off Isolation: -63dB @ 10MHz
- Break-Before-Make Switching
- High Bandwidth: 350 MHz
- Extended Industrial Temperature Range:
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Packaging (Lead Free \& Green)
-12-pin TDFN, $3 \mathrm{~mm} \times 1 \mathrm{~mm}$

Description

The PI5A3158B is a dual high-bandwidth, fast singlepole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.65 V to 5.5 V , the PI 5 A 3158 B has a maximum ON resistance of 12 -ohms at $1.65 \mathrm{~V}, 9$-ohms at $2.3 \mathrm{~V} \&$ $6-$ ohms at 4.5 V .
Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.
The control input, S , is independent of supply voltage.

Application

- Cell Phones
- PDAs
- MP3 Players
- Portable Instrumentation
- Battery powered Communications
- Computer Peripherals

Pin Description

Pin No	Name	Description
8,11	${ }_{1} \mathrm{~B}_{\mathrm{X}}$	Data Port (Normally open)
3,6	GND	Ground
2,5	${ }_{0} \mathrm{~B}_{\mathrm{X}}$	Data Port (Normally closed)
1,4	$\mathrm{~A}_{\mathrm{X}}$	Common Output / Data Port
9,12	$\mathrm{~V}_{\mathrm{CC}}$	Positive Power Supply
7,10	$\mathrm{~S}_{\mathrm{X}}$	Logic Control

Logic Function Table

Logic Input (IN ${ }_{X}$)	Function
0	${ }_{0} \mathrm{~B}_{\mathrm{X}}$ Connected to A_{X}
1	${ }_{1} \mathrm{~B}_{\mathrm{X}}$ Connected to A_{X}

Note: $\mathrm{x}=1$ or 2

PI5A3158B

Maximum Ratings

Storage Temperature.................................-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with Power Applied.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage V_{CC}	-0.5V to +7.0 V
DC Switch Voltage $\mathrm{V}_{\text {IN }}$	-0.5V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Control Input Voltage V_{S}	-0.5 V to +7.0 V
DC Output Current $\mathrm{V}_{\text {OU }}$	128 mA
DC V $\mathrm{CCC}^{\text {or Ground Current }} \mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{G}}$	$\pm 100 \mathrm{~mA}$
Junction Temperature under Bias (TJ)	... $150^{\circ} \mathrm{C}$
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
Power Dissipation (PD) @ $+85^{\circ} \mathrm{C}$	180mW
ESD(HBM).	2000 V

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{CC}	Operating Voltage	-	1.65	-	5.5	V
$\mathrm{~V}_{\mathrm{S}}$	Control Input Voltage	-	0	-	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Switch Input Voltage	-	0	-	V_{CC}	V
$\mathrm{V}_{\mathrm{OUT}}$	Output Voltage	-	0	-	V_{CC}	V
T_{A}	Operating Temperature	-	-40	25	85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	Control Input VCC $=2.3 \mathrm{~V}-3.6 \mathrm{~V}$	0	-	10	$\mathrm{~ns} / \mathrm{V}$
		0	-	5	$\mathrm{~ns} / \mathrm{V}$	

[^0]A Product Line of Diodes Incorporated

PI5A3158B

DC Electrical Characteristics

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Description	Test Conditions	$\begin{gathered} \text { Temperature } \\ \left(\mathrm{T}_{\mathrm{A}}::^{\mathrm{O}} \mathrm{C}\right) \end{gathered}$	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {IAR }}$	Analog Input Signal Range	$\mathrm{V}_{\text {CC }}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	0	-	V_{CC}	V
R_{ON}	ON Resistance ${ }^{(1)}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	-	4	6	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IV}}=2.4 \mathrm{~V}$		-	5	8	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}, \mathrm{~V}_{\text {IV }}=4.5 \mathrm{~V}$		-	7	11	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}, \mathrm{~V}_{\text {IV }}=0 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-	-	6	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}, \mathrm{~V}_{\text {IV }}=2.4 \mathrm{~V}$		-	-	8	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}, \mathrm{~V}_{\text {IV }}=4.5 \mathrm{~V}$		-	-	11	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	-	5	8	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.0 \mathrm{~V}$		-	10	15	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-	-	8	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.0 \mathrm{~V}$		-	-	15	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IV}}=0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	-	6	9	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.3 \mathrm{~V}$		-	13	20	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}, \mathrm{~V}_{\text {IV }}=0 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-	-	9	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IV}}=2.3 \mathrm{~V}$		-	-	20	
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	-	8	12	
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=1.65 \mathrm{~V}$		-	20	30	
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}, \mathrm{~V}_{\text {IV }}=0 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-	-	12	
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=1.65 \mathrm{~V}$		-	-	25	
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON Resistance Match Between Channels ${ }^{(1,2,3)}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=3.15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	-	0.15	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=2.1 \mathrm{~V}$		-	0.2	-	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.6 \mathrm{~V}$		-	0.3	-	
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.15 \mathrm{~V}$		-	0.5	-	
$\mathrm{R}_{\text {ONF }}$	ON Resistance Flatness$(1,2,4)$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	$25^{\circ} \mathrm{C}$	-	6	-	Ω
		$\begin{array}{cl} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, & \mathrm{I}_{\mathrm{A}} \\ 24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} & \leq \mathrm{V}_{\mathrm{CC}} \end{array}$		-	12	-	
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$		-	22	-	
		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$		-	90	-	
$\mathrm{V}_{\text {IH }}$	Input High Voltage (Logic High Level)	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	1	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		1.2	-	-	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		1.3	-	-	
		$\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$		1.5	-	-	
		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$		1.8	-	-	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (Logic Low Level)	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-	-	0.4	V
		$\mathrm{V}_{\text {CC }}=2.3 \mathrm{~V}$		-	-	0.6	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		-	-	0.8	
		$\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$		-	-	1	
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		-	-	1.2	
$\mathrm{I}_{\text {LKC }}$	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=0 \mathrm{~V}$ to 5.5 V	$25^{\circ} \mathrm{C}$	-	-	± 0.1	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-	-	± 1.0	
$\mathrm{I}_{\text {OFF }}$	OFF State Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=1.65 \mathrm{~V}$ to 5.5 V	$25^{\circ} \mathrm{C}$	-	-	± 0.1	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-	-	± 10	
I_{CC}	Quiescent Supply Current	All channels ON or $\mathrm{OFF}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{I}_{\text {OUT }}=0, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	-	-	1	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-	-	5	

Notes:

1. Measured by voltage drop between A and B pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports (A or B).
2. Parameter is characterized but not tested in production.
3. $\mathrm{DR}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \mathrm{min}$. measured at identical V_{CC}, temperature and voltage levels.
4. Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions. Guaranteed by design.

A Product Line of Diodes Incorporated

PI5A3158B

Capacitance

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Control Input	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-	2.5	-	pF
$\mathrm{C}_{\mathrm{IO}-\mathrm{B}}$	For B Port, Switch OFF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{(1)}$	-	5.0	-	
$\mathrm{C}_{\text {IOA-ON }}$	For A Port, Switch ON		-	15.0	-	

Notes:

1. Capacitance is characterized but not tested in production

Switch and AC Characteristics ${ }^{(1)}$

Parameter	Description	Test Conditions	Supply Voltage	Temperature $\left(\mathrm{T}_{\mathrm{A}}:{ }^{\circ} \mathbf{C}\right)$	Min.	Typ.	Max.	Units
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay:A to Bn	See test circuit diagrams 1 and 2. V_{I} Open (2)	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-40 to $85^{\circ} \mathrm{C}$	-	0.7	-	ns
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		-	0.6	-	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		-	0.4	-	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Turn ON Time: A to Bn	See test circuit diagrams 1 \& 2.$\begin{aligned} & \mathrm{V}_{\mathrm{r}}=2 \mathrm{VCC} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{l}}=0 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-40 to $85^{\circ} \mathrm{C}$	-	9	-	
			$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		-	5	-	
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		-	3	-	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		-	2	-	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Turn OFF Time: A to Bn	See test circuit diagrams 1 and 2.$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=2 \mathrm{VCC} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-40 to $85^{\circ} \mathrm{C}$	-	9	-	
			$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		-	6	-	
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		-	5	-	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		-	3	-	
$t_{\text {BM }}$	Break Before Make Time	See test circuit diagram 3.	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-40 to $85^{\circ} \mathrm{C}$	0.5	-	-	
			$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		0.5	-	-	
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		0.5	-	-	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		0.5	-	-	
Q	Charge Injection	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{gathered}$ See test circuit 4.	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	-	5	-	pC
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		-	4	-	
OIRR	Off Isolation	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =50 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}} \\ & =0 \Omega, \mathrm{f}=10 \mathrm{MHz} . \end{aligned}$ See test circuit 5. ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	$25^{\circ} \mathrm{C}$	-	-63	-	dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk Isolation	See test circuit 6. ${ }^{(4)}$	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	$25^{\circ} \mathrm{C}$	-	-64	-	
f3dB	-3dB Bandwidth	See test circuit 9	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	$25^{\circ} \mathrm{C}$	-	350	-	MHz

Notes:

1. Guaranteed by design
2. The device contributes no other propagation delay other than the RC delay of the switch ON resistance and the 50 pF load capacitance, when driven by an ideal voltage source with zero output impedance.
3. Off Isolation $=20 \log _{10}\left[\mathrm{VBn}_{\mathrm{Bn}} / \mathrm{V}_{\mathrm{A}}\right]$ and is measured in dB
4. Crosstalk Isolation $=20 \log 10\left[\mathrm{~V}_{\mathrm{B} 1} / \mathrm{V}_{\mathrm{B} 0}\right]$ and is measured in dB .

A Product Line of Diodes Incorporated

PI5A3158B

Test Circuits and Timing Diagrams

Note: Input driven by 50 ohm source terminated in 500 ohm
Note: C_{L} Includes load and stray capacitance
Note: Input $\mathrm{PRR}=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{nS}$

Figure 1. AC Test Circuit

Figure 2. AC Waveforms

Figure 3. Break Before Make Interval Timing

Figure 4. Charge Injection Test

Figure 5. Off Isolation

Figure 7. Channel Off Capacitance

Figure 6. Crosstalk

Figure 8. Channel On Capacitance

A Product Line of Diodes Incorporated

Figure 9. Bandwidth

A Product Line of Diodes Incorporated

PI5A3158B

Mechanical Information

12-pin TDFN (ZA)

Note: For latest package info, please check: http://www.pericom.com/support/packaging/packaging-mechanicals-and-thermalcharacteristics/

Ordering Information

Part Number	Package Code	Package	Top Marking
PI5A3158BZAE	ZA	12-Contact, Thin Dual In-Line Flat No-Lead (TDFN)	kE
PI5A3158BZAEX	ZA	12-Contact, Thin Dual In-Line Flat No-Lead (TDFN), Tape \& Reel	kE

Note:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- Adding X Suffix= Tape/Reel

[^0]: Note: Control input must be held HIGH or LOW; it must not float

