

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SOTINYTM Low Voltage Dual SPDT Analog Switch 2:1 Mux/DeMux Bus Switch

Features

• CMOS Technology for Bus and Analog Applications

• Low On-Resistance: 8Ω at 3.0V • Wide V_{DD} Range: 1.65V to 5.5V

• Rail-to-Rail Signal Range

• Control Input Overvoltage Tolerance: 5.5V min.

• Fast Transition Speed: 5.2ns max. at 5V

• High Off Isolation: 57dB at 10MHz

• 54dB (10MHz) Crosstalk Rejection Reduces Signal Distortion

ESD Protection 2kV HBM + 200V MM

· Break-Before-Make Switching

• High Bandwidth: 250 MHz

Extended Industrial Temperature Range: –40°C to 85°C

• Packaging (Pb-free & Green available):

-12-contact TDFN (ZA)

Applications

· Cell Phones

PDAs

• Portable Instrumentation

· Battery Powered Communications

• Computer Peripherals

Pin Description

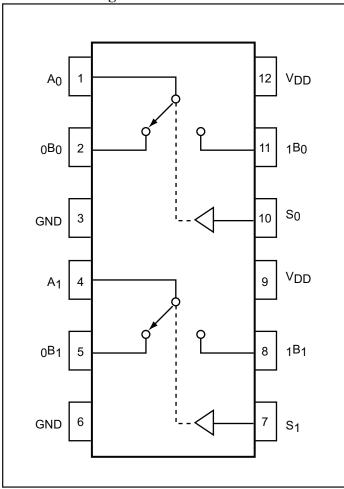
Pin Number	Name	Description		
8, 11	$_1B_X$	Data port (Normally Open)		
3, 6	GND	Ground		
2, 5	$_0$ B $_{ m X}$	Data port (Normally Closed)		
1, 4	A_{X}	Common Output/data port		
9, 12	V_{DD}	Positive Power Supple		
7, 10	S_X	Logic Controll		

Notes:

1. x = 0 or 1

Logic Function Table

Logic Input(s)	Function
0	₀ B _X Connection to A _X
1	₁ B _X Connected to A _X


Description

The PI5A3158 is a dual high-bandwidth, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.65V to 5.5V, the PI5A3158 has a maximum On-Resistance of 12Ω at 1.65V, 9Ω at 2.3V & 6Ω at 4.5V.

Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

The control input, S, tolerates input drive signals up to 5.5V, independent of supply voltage.

Connection Diagram

09-0007 1 PS8637C 12/01/09

Absolute Maximum Ratings⁽¹⁾

Supply Voltage V _{DD} 0.5V to +7V
DC Switch Voltage $(V_S)^{(2)}$ 0.5V to V_{DD} +0.5V
DC Input Voltage $(V_{IN})^{(2)}$ 0.5V to +7.0V
DC Output Current (V _{OUT})
DC V_{DD} or Ground Current (I_{CC}/I_{GND})±100mA
Storage Temperature Range (T _{STG})65°C to +150°C
Junction Temperature under Bias (T _J)150°C
Junction Lead Temperature (T _L)
(Soldering, 10 seconds)260°C
Power Dissipation (P _D) @ +85°C 180mW

Recommended Operating Conditions⁽³⁾

Supply Voltage Operating (V _{DD}) 1.65V to 5.5V
Control Input Voltage (V $_{IN})$
Switch Input Voltage (V $_{\mbox{\footnotesize{IN}}})$
Output Voltage (V $_{OUT}) \ldots \ldots 0 V$ to V_{DD}
Operating Temperature (T_A) -40 °C to $+85$ °C
Input Rise and Fall Time (t_r, t_f)
Control Input $V_{DD} = 2.3V - 3.6V \dots 0ns/V$ to $10ns/V$
Control Input $V_{DD} = 4.5V - 5.5V \dots 0ns/V$ to $5ns/V$
Thermal Resistance (θ_{JA})350°C/W

Notes:

- 1. Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the inut and output diode current ratings are observed.
- 3. Control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics (Over the Operating temperature range, $T_A = -40^{\circ}\text{C}$ to 85°C)

Parameters	Description	Test Conditions	Supply Voltage	Temp	Min.	Тур.	Max.	Units
V _{IAR}	Analog Input Signal Range		V _{DD}	T _A = 25°C & -40°C to 85°C	0		V_{DD}	V
		$I_{O} = 30 \text{mA}, V_{IN} = 0 \text{V}$				4	6	
R_{ON}		$I_{O} = -30 \text{mA}, V_{IN} = 2.4 \text{V}$	4.5V	$T_A = 25$ °C		5	8	
		$I_{O} = -30 \text{mA}, V_{IN} = 4.5 \text{V}$				8	13	
		$I_{O} = 30 \text{mA}, V_{IN} = 0 \text{V}$					6	
R_{ON}		$I_{O} = -30 \text{mA}, V_{IN} = 2.4 \text{V}$	4.5V	$T_A = -40$ °C to 85°C			8	Ω
		$I_{O} = -30 \text{mA}, V_{IN} = 4.5 \text{V}$]				13	
D		$I_{O} = 24\text{mA}, V_{IN} = 0V$	2.01/	$T_A = 25$ °C		5	8	
R_{ON}		$I_{O} = -24 \text{mA}, V_{IN} = 3.0 \text{V}$	3.0V			12	19	
D	On- $I_O = 24$	$I_O = 24$ mA, $V_{IN} = 0$ V	3.0V	T _A = -40°C to 85°C			8	
R_{ON}	Resistance (4)	$I_{O} = -24 \text{mA}, V_{IN} = 3.0 \text{V}$					19	
D		$I_{O} = 24\text{mA}, V_{IN} = 0V$	2.237	т 259С		6	9]
R_{ON}		$I_{O} = -24 \text{mA}, V_{IN} = 2.3 \text{V}$	2.3V	$T_A = 25$ °C		16	24	
D		$I_{O} = 24\text{mA}, V_{IN} = 0V$	2.237	$T_A = -40$ °C to			9]
R_{ON}		$I_{O} = -24 \text{mA}, V_{IN} = 2.4 \text{V}$	2.3V	85℃			24	
D		$I_O = 24$ mA, $V_{IN} = 0$ V	1.6537	т 259С		8	12	
R_{ON}		$I_{O} = -24 \text{mA}, V_{IN} = 1.65 \text{V}$	1.65V	$T_A = 25$ °C		27	39	
D]	$I_{O} = 24\text{mA}, V_{IN} = 0V$	1.6537	$T_A = -40$ °C to			12	
R_{ON}		$I_{O} = -24$ mA, $V_{IN} = 1.65$ V	1.65V	85°C			39	

09-0007 2 PS8637C 12/01/09

DC Electrical Characteristics (Over the Operating temperature range, $T_A = -40^{\circ}\text{C}$ to 85°C) (continued)

Parameters	Description	Test Conditions	Supply Voltage	Temp	Min.	Тур.	Max.	Units
		$I_A = -30 \text{mA}, V_{BN} = 3.15 \text{V}$	4.5V			0.15		
A.D.	On-Resistance Match Between	$I_A = -24 \text{mA}, V_{BN} = 2.1 \text{V}$	3.0V	$T_A = 25$ °C		0.2		
ΔR_{ON}	Channels (4, 5, 6)	$I_A = -8mA, V_{BN} = 1.6V$	2.3V			0.3		
		$I_A = -4mA, V_{BN} = 1.15V$	1.65V			0.3		
		$I_A = -30\text{mA}, \ 0 \le V_{BN} \le V_{DD}$	5.0V			6		Ω
D	On-Resistance	$I_A = -24\text{mA}, \ 0 \le V_{BN} \le V_{DD}$	3.3V	T 250C		12		
R _{ONF}	Flatness ^(4, 5, 7)	$I_{A} = -8mA, 0 \le V_{BN} \le V_{DD}$	2.5V	$T_A = 25$ °C		22		
		$I_{A} = -4mA, 0 \le V_{BN} \le V_{DD}$	1.8V			90		
3 7	Input High Voltage	Logic High Level	$V_{\rm DD} = 1.65 \text{V to}$ 1.95 V	T _A = -40°C to 85°C	0.75 V _{DD}			V
V_{IH}			$V_{\rm DD} = 2.3 \text{V to} $ 5.5 V		0.7 V _{DD}			
	Input Low Voltage	1 Logic LowLevel	$V_{\rm DD} = 1.65 \text{V to}$ 1.95 V					
V_{IL}			$V_{\rm DD} = 2.3 \text{V to} $ 5.5 V					
	In a 4 I and an			$T_A = 25$ °C			±0.1	
	Input Leakage Curent	$0 \le V_{IN} \le 5.5V$	$V_{DD} \le 0V \le 5.5V$	$T_A = -40$ °C to 85°C			±1.0	
	OFF State		V < 1.65V <	$T_A = 25$ °C			±0.1	
I _{OFF}	Leakage Cur- rent	$0 \le V_{IN} \le 5.5V$	$V_{DD} \le 1.65 V \le 5.5 V$	$T_A = -40$ °C to 85°C			±10	μА
	0 :	All Channels ON or OFF,		$T_A = 25$ °C			2	
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{DD}$ or GND, I_{OUT} = 0	$V_{\rm DD} = 5.5 V$	T _A = -40°C to 85°C			20	

Notes:

- 4. Measured by voltage drop between A and B pins at the indicated current through the device. On-Resistance is determined by the lower of the voltages on two ports (A or B).
- 5. Parameter is characterized but not tested in production.
- 6. ΔR_{ON} = R_{ON} max R_{ON} min. measured at identical V_{DD} , temperature and voltage levels.
- 7. Flatness is defined as difference between maximum and minimum value of On-Resistance over the specified range of conditions.
- 8. Guaranteed by design.

Capacitance⁽¹²⁾

Parameters	Description	Test Conditions	Supply Voltage	Temp	Min.	Тур.	Max.	Units
C_{IN}	Controll Input					2.3		
C _{IO-B}	For B Port, Switch OFF	$f = 1 \text{ MHz}^{(12)}$ V_D	$V_{\rm DD} = 5.0 \mathrm{V}$	$T_{A} = 25^{\circ}C$		6.5		pF
C _{IOA-ON}	For A Port, Switch ON	I = I MIHZ\				18.5		

09-0007 3 PS8637C 12/01/09

Switch and AC Characteristics

Parameters	Description	Test Conditions	Supply Voltage	Temp	Min.	Тур.	Max.	Units
		See test circut	$V_{\rm DD} = 2.3 \text{V to } 2.7 \text{V}$			1.2		
t _{PLH}	Propagation Delay: A to Bn	diagram 1 and 2	$V_{\rm DD} = 3.0 \text{V to } 3.6 \text{V}$	$T_A = 25^{\circ}C \& -40^{\circ}C \text{ to } 85^{\circ}C$		0.8]
$t_{ m PHL}$	Delay. A to Bil	V _I Open ⁽¹⁰⁾	$V_{\rm DD} = 4.5 \text{V to } 5.5 \text{V}$	-40 C 10 83 C		0.3		
		See test circut	$V_{DD} = 1.65V \text{ to } 1.95V$		7		23]
t_{PZL}	Output Enable Turn ON Time:	diagram 1 and 2	$V_{\rm DD} = 2.3 \text{V to } 2.7 \text{V}$	T 259C	3.5		13	
t_{PZH}	A to Bn	$V_I = 2 V_{DD}$ for t_{PZL} , $V_I = 0V$ for	$V_{\rm DD} = 3.0 \text{V to } 3.6 \text{V}$	$T_A = 25$ °C	2.5		6.9	
		t _{PZH}	$V_{\rm DD} = 4.5 \text{V to } 5.5 \text{V}$		1.7		5.2	
		See test circut	$V_{\rm DD} = 2.5 V$				24	
t_{PZL}	Output Enable Turn ON Time:	diagram 1 and 2 $V_I = 2 V_{DD}$ for	$V_{\rm DD} = 3.3 \mathrm{V}$	$T_A = 25^{\circ}C \&$			14	
t_{PZH}	A to Bn	t_{PZL} , $V_{I} = 0V$ for	$V_{\rm DD} = 3.0 \text{V to } 3.6 \text{V}$	-40°C to 85°C			7.6	
		t _{PZH}	$V_{\rm DD} = 4.5 \text{V to } 5.5 \text{V}$				5.7	
		See test circut	$V_{DD} = 1.65 V \text{ to } 1.95 V$		3		12.5	
$t_{\rm PLZ}$	Output Disable- Turn OFF Time: A to Bn	diagram 1 and 2 $V_I = 2 V_{DD}$ for t_{PZL} , $V_I = 0V$ for t_{PZH}	$V_{\rm DD} = 2.3 \text{V to } 2.7 \text{V}$	$T_A = 25$ °C	2		7	
touz			$V_{\rm DD} = 3.0 \text{V to } 3.6 \text{V}$		1.5		5	
			$V_{\rm DD} = 4.5 \text{V to } 5.5 \text{V}$		0.8		3.5]
	Output Disable- Turn OFF Time: A to Bn	See test circut diagram 1 and 2 $V_I = 2 V_{DD}$ for t_{PZL} , $V_I = 0V$ for	$V_{\rm DD} = 2.5 V$	T _A = 25°C & -40°C to 85°C			13	
$t_{\rm PLZ}$			$V_{\rm DD} = 3.3 \mathrm{V}$				7.5	
t_{PHZ}			$V_{\rm DD} = 3.0 \text{V to } 3.6 \text{V}$				5.3	
		t _{PZH}	$V_{\rm DD} = 4.5 \text{V to } 5.5 \text{V}$				3.8	
	Break Before Make Time	See Test Circut diagram 9. ⁽⁹⁾	$V_{DD} = 2.5V$	T _A = 25°C & -40°C to 85°C	0.5]
4			$V_{DD} = 3.3V$		0.5			
$t_{ m BM}$			$V_{\rm DD} = 3.0 \text{V to } 3.6 \text{V}$		0.5			
			$V_{\rm DD} = 4.5 \text{V to } 5.5 \text{V}$		0.5			
		$C_{L} = 0.1 \text{nF},$	$V_{\rm DD} = 5.0 \mathrm{V}$			7		
Q	Charge Injection	$V_{GEN} = 0V,$ $R_{GEN} = 0\Omega,$ See test circut 4	$V_{DD} = 3.3V$	$T_A = 25$ °C		3		pC
O _{IRR}	Off Isolation	$R_{L} = 50\Omega,$ $V_{GEN} = 0V,$ $R_{GEN} = 0\Omega, See$ test circut $5^{(11)}$	$V_{DD} = 1.65 V \text{ to } 5.5 V$	T _A = 25°C		-57		dB
X _{TALK}	Crosstalk Isolation	See test circut 6	$V_{DD} = 1.65 \text{V to } 5.5 \text{V}$	$T_A = 25$ °C		-54		
f_{3dB}	-3dB Bandwidth	See test circut 9	$V_{\rm DD} = 1.65 \text{V to } 5.5 \text{V}$	$T_A = 25$ °C		250		MHz

Notes:

- 9. Guaranteed by design.
- 10. Guaranteed by design but not production tested. The device contributes no other propagation delay other than the RC delay of the switch On-Resistance and the 50pF load capacitance, whine driven by an ideal voltage source with zero output impedance.
- 11. Off Isolation = 20 Log₁₀ [V_A / V_{Bn}] and is measured in dB.
- 12. $T_A = 25$ °C, f = 1MHz. Capacitance is characterized but not tested in production.

09-0007 4 PS8637C 12/01/09

Test Circuits and Timing Diagrams

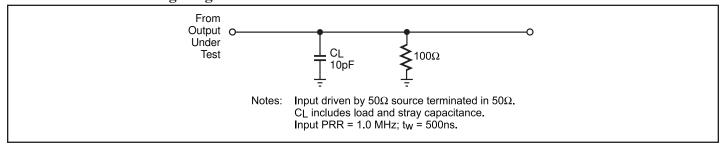


Figure 1. AC Test Circuit

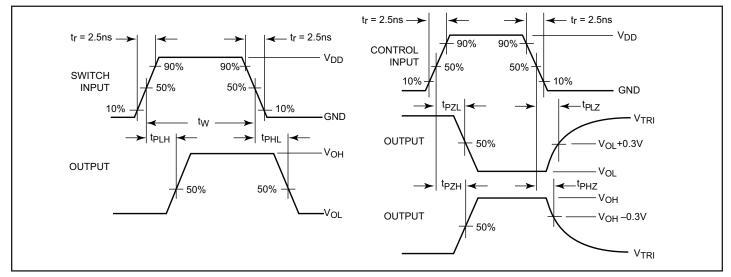


Figure 2. AC Waveforms

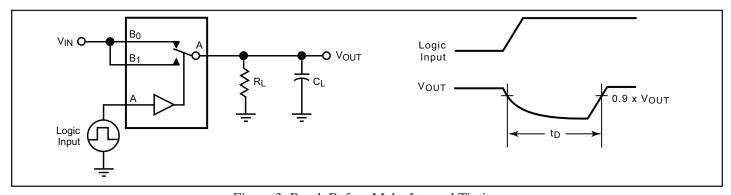


Figure 3. Break Before Make Interval Timing

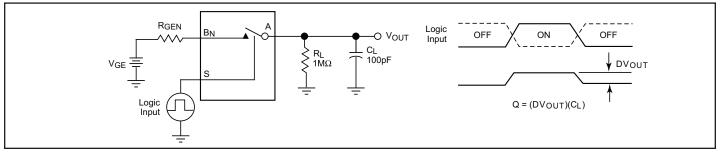


Figure 4. Charge Injection Test

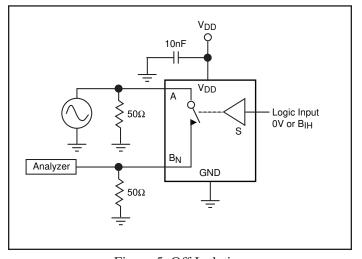


Figure 5. Off Isolation

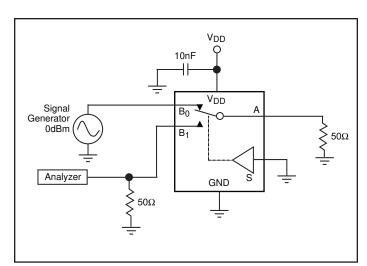


Figure 6. Crosstalk

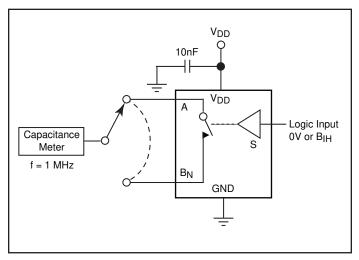


Figure 7. Channel Off Capacitance

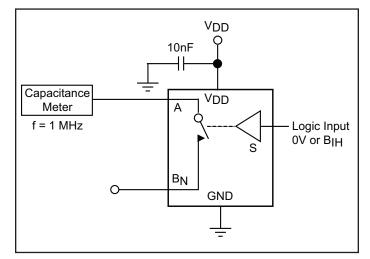


Figure 8. Channel On Capacitance

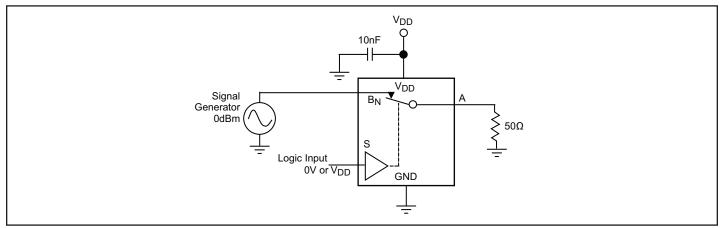
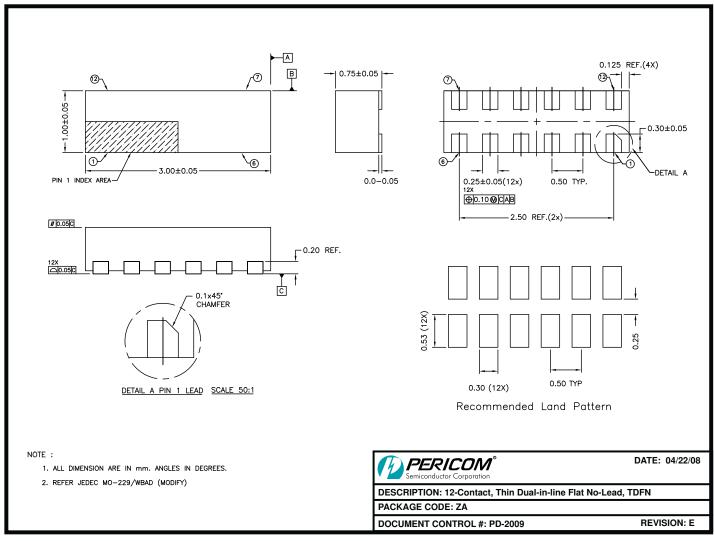



Figure 9. Bandwidth

09-0007 6 PS8637C 12/01/09

08-0286

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Packaging Code	Package Type	Top Mark
PI5A3158ZAEX	ZA	Pb-free & Green, 12-contact TDFN	A0

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

09-0007 7 PS8637C 12/01/09