

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Voltage SPST 0.8Ω Analog Switch

Features

 CMOS Technology for Bus and Analog Applications

Low On-Resistance: 0.8Ω at 3.0V
 Wide V_{CC} Range: 1.65V to 5.5V

• Rail-to-Rail Signal Range

• Control Input Overvoltage Tolerance: 5.5V

• Fast Transition Speed: 2ns at 5.0V

• High Bandwidth: 200 MHz

• I/O pins Have Power-off Protection Functions

Extended Industrial Temperature Range:
 -40°C to 85°C

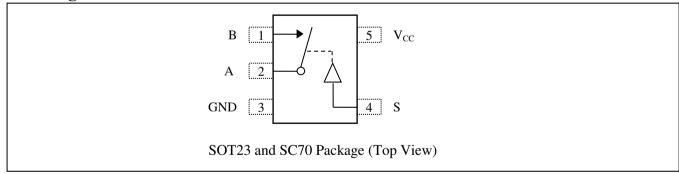
• Packaging (Pb-free & Green):

-5-pin SOT23

-5-pin SC70

Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Battery powered Communications
- Computer Peripherals


Description

The PI5A3167C is a high-bandwidth, fast single-pole single-throw (SPST) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. The device features ultra low RON of 0.8Ω typical at 3.0V VCC and will operate over the wide VCC range of 1.65V to 5.5V.

The PI5A3167C features very low quiescent current even when the control voltage is lower than the VCC supply. This feature services the mobile handset applications very well by allowing direct interface with baseband processor general purpose I/Os.

The control input, S, is independent of supply voltage.

Pin Assignment

Pin Description

Pin No	Pin Name	Description
1	В	Data Port (normally connect)
2	A	Common Output/Data Port
3	GND	Ground
4	S	Logic Control
5	VCC	Positive Power Supply

Logic Function Table

Logic Input(S)	Function(A to B)
0	ON
1	OFF

Maximum Ratings

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Supply Voltage V _{CC}	0.5V to +7.0V
DC Switch Voltage V _S	0.5V to +7.0V
DC Input Voltage V _{IN}	0.5V to +7.0V
DC Output Current V _{OUT}	128mA
DC V _{CC} or Ground Current I _{CC} /I _{GND}	±100mA
Junction Temperature under Bias (TJ)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
ESD (HBM)	4KV
Power Dissipation (PD) @ +85°C	SOT23 250mW
	SC70 200mW

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{CC}	Operating Voltage	-	1.65	-	5.5	V
V_{IN}	DC Input Voltage	-	0	-	V_{CC}	V
V_{S}	Switch Input Voltage	-	0	-	5.5	V
V _{OUT}	Output Voltage	-	0	-	V_{CC}	V
T_A	Operating Temperature	-	-40	25	85	°C
t t Input Disc and Fall Time		Control Input $VCC = 2.7V$ to $3.6V$	0	-	10	ns/V
t_r, t_f Input Ris	Input Rise and Fall Time	Control Input $VCC = 4.5V$ to $5.5V$	0	-	5	ns/V

Note: Control input must be held HIGH or LOW; it must not float.

2015-09-0004 PT0453-1 09/23/15 2

DC Electrical Characteristics

 $(T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}, \text{ unless otherwise noted.})$

Parameter	Description	Test Conditions	Supply Voltage	Min	Тур	Max	Units
V _{IAR}	Analog Input Signal Range	-	V_{CC}	0	-	VCC	V
		$I_A = 100 \text{mA}, V_B = 0 \text{V}$		-	0.7	1.1	Ω
		$I_A = 100 \text{mA}, V_B = 2.4 \text{V}$	4.5V	-	0.6	1.0	
		$I_A = 100 \text{mA}, V_B = 4.5 \text{V}$		-	0.8	1.2	
		$I_A = 100 \text{mA}, V_B = 0 \text{V}$	2.01/	-	0.8	1.3	
R _{ON}	ON Resistance (1)	$I_A = 100 \text{mA}, V_B = 3.0 \text{V}$	3.0V	-	0.9	1.9	
		$I_{A} = 100 \text{mA}, V_{B} = 0 \text{V}$	2.277	-	1.0	1.5	
		$I_A = 100 \text{mA}, V_B = 2.3 \text{V}$	2.3V	-	1.2	1.8	
		$I_A = 100 \text{mA}, V_B = 0 \text{V}$	1 (5)	-	1.3	1.9	
		$I_A = 100 \text{mA}, V_B = 1.65 \text{V}$	1.65V	-	2.0	2.8	
		$I_A = 100 \text{mA}, V_B = 0 \text{V}, 2.4 \text{V}, 4.5 \text{V}$	4.5V	-	0.2	0.4	
D	(2)	$I_A = 100 \text{mA}, V_B = 0 \text{V}, 1.5 \text{V}, 3.3 \text{V}$	3.3V	-	0.2	0.4	
R _{ONF}	ON Resistance Flatness	$I_A = 100 \text{mA}, V_B = 0 \text{V}, 1.1 \text{V}, 2.5 \text{V}$	2.5V	-	0.4	0.6	Ω
		$I_A = 100 \text{mA}, V_B = 0 \text{V}, 0.7 \text{V}, 1.8 \text{V}$	1.8V	-	1.0	1.4	
		Input High Voltage Logic High Level	$V_{CC} = 1.65V$	1	-	-	V
			$V_{CC} = 2.3V$	1.2	-	-	
$V_{_{ m IH}}$	Input High Voltage		$V_{CC} = 3V$	1.3	-	-	
			$V_{CC} = 4.2V$	1.5	-	-	
			$V_{CC} = 5.5V$	1.8	-	-	
			$V_{CC} = 1.65V$	-	-	0.4	
V	Input Low Voltage	Logic Low Level	$V_{CC} = 2.3V$ $V_{CC} = 3V$	-	-	0.6	V
$V_{_{ m IL}}$	input Low Voltage	Logic Low Level	$V_{CC} = 3V$ $V_{CC} = 4.2V$	_	_	1	v
			$V_{CC} = 5.5V$	_	_	1.2	
_	Source Off Leakage	V_{CC} =5.5V, VA =1V, 4.5V		-20			
I _{OFF (B)}	Current	$V_{B} = 1V, 4.5V$	$V_{CC} = 3V$		-	+20	A
I	Channel On Leakage	_	$V_{CC} = 1.65 \text{ to}$	-40	_	+40	nA
$I_{NC(A, B)}$,	Current	-	5.5V	-40	_	T40	
I_{PWROFF}	Input Leakage Current for Power off	$0 \le V_A \le 5.5 V, 0 \le V_B \le 5.5 V$	$V_{CC} = 0V$	-5	-	5	uA
I _{CC}	Quiescent Supply Current	All channels ON or OFF, $V_B = V_{CC}$ or GND, $I_{OUT} = 0$	$V_{CC} = 3.6V$ $V_{CC} = 5.5V$	-	0.002 0.002	0.1	μΑ

Notes:

Capacitance⁽¹⁾

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
C_{IN}	Control Input		-	3.5	-	
$C_{\text{IO-B}}$	For B Port, Switch OFF	$V_{CC} = 5.0V, f = 1 \text{ MHz}, T_A = 25^{\circ}C$	-	15.0	-	рF
C_{IOA-ON}	For A Port, Switch ON		-	34.0	-	r-

Notes

1. Capacitance is characterized but not tested in production

2015-09-0004 PT0453-1 09/23/15

^{1.} Measured by voltage drop between A and B pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports (A or B).

^{2.} Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions. Guaranteed by design.

Switch and AC Characteristics $^{(1)}$

Parameter	Description	Test Conditions	Supply Voltage	Min	Тур	Max	Units
4	T T.	G E' 1	$V_{CC} = 2.7V \text{ to } 3.6V$	-	3	8	
t_{ON}	Turn on Time	See Figure 1	$V_{CC} = 4.5V \text{ to } 5.5V$	-	2	6	
t	Turn off Time	Saa Eiguna 1	$V_{CC} = 2.7V \text{ to } 3.6V$	-	9	14	ns
$t_{ m OFF}$	rum on rime	See Figure 1	$V_{CC} = 4.5V \text{ to } 5.5V$	-	5	7.5	
Q	Charge Injection	$C_L = 1nF, V_{GEN} = 0V,$ $R_{GEN} = 0\Omega.$	$V_{CC} = 5.0V$	-	35	-	рC
Q		See Figure 2	$V_{CC} = 3.3V$	-	25	-	рС
O _{IRR}	Off Isolation	R_L =50 Ω , V_{GEN} =0 V , R_{GEN} =0 Ω , f =1 M Hz. See Figure 3 $^{(2)}$	V _{CC} =1.65V to 5.5V	-	-70	-	dB
f3dB	-3dB Bandwidth	See Figure 6 $V_{CC} = 1.65 V \text{ to } 5.$		-	200	-	MHz
$T_{ m HD}$	Total Harmonic Distortion	R_L =600 Ω , V_{IN} =0.5 V pp, f=20 Hz to 20 k Hz See Figure 7	V _{CC} =2.7V to 4.2V	-	0.015	-	%

Notes:

^{1.} Guaranteed by design.

^{2.} Off Isolation = $20 \text{ Log}_{10}[V_B/V_A]$ and is measured in dB.

Test Circuits and Timing Diagrams

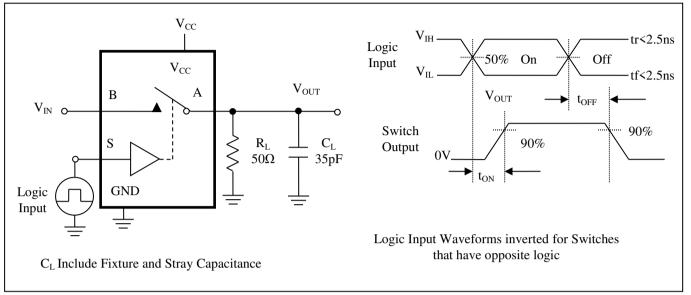
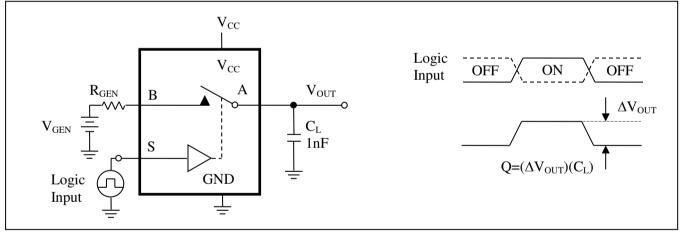



Figure 1. Turn ON/OFF Timing

Figure 2. Charge Injection Test

2015-09-0004 PT0453-1 09/23/15 5

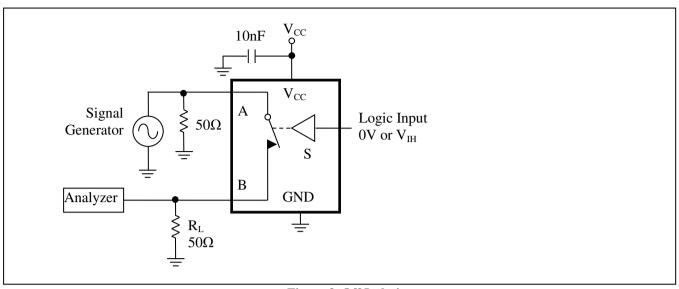


Figure 3. Off Isolation

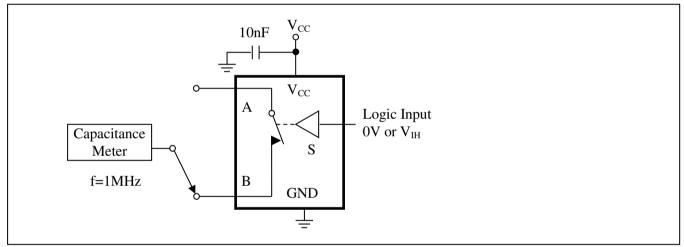


Figure 4. Channel Off Capacitance

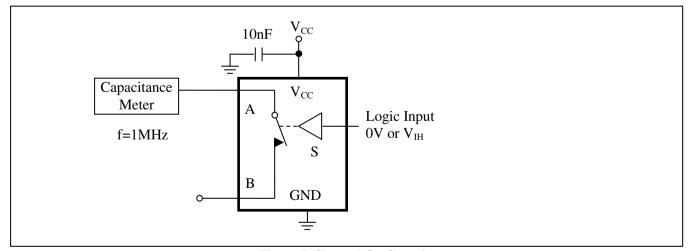


Figure 5. Channel On Capacitance

2015-09-0004 PT0453-1 09/23/15

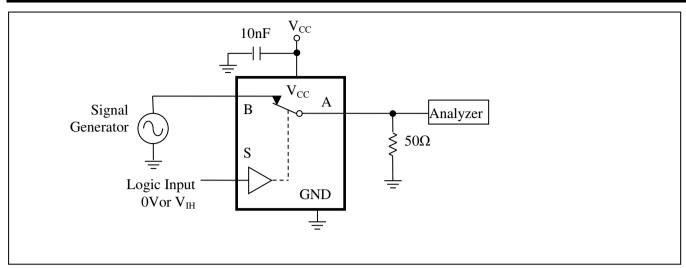
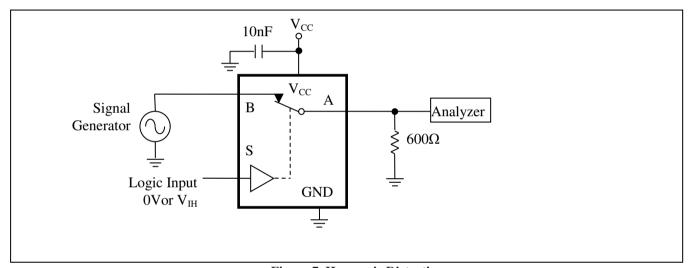
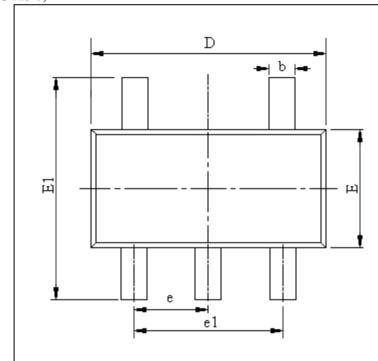
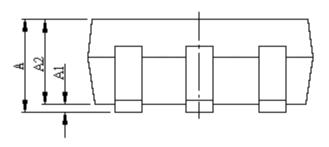
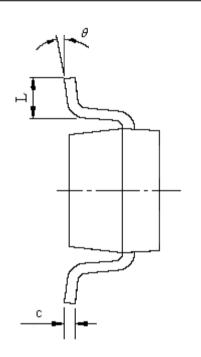



Figure 6. Bandwidth


Figure 7. Harmonic Distortion


2015-09-0004 PT0453-1 09/23/15

Mechanical Information


TA (SOT23-5)

Note:

- 1) Controlling dimensions in millimeters.
- 2) Ref: JEDEC MO-178C/AA

PKG.	PKG. DIMENSIONS(MM)						
SYMBOL	MIN	MAX					
Α	1.05	1.25					
A1	0.00	0.10					
A2	1.05	1.15					
b	0.30	0.50					
С	0.10	0.20					
D	2.82	3.02					
Е	1.50	1.70					
E1	2.65	2.95					
е	0.95	BSC					
e1	1.80	2.00					
L	0.30	0.60					
θ	0°	8°					

C (SC70-5)

Ordering Information

Part Number	Package Code	Package	Top Marking
PI5A3167CCEX	С	Lead Free and Green SC70-5 (C) Tape & reel	rE
PI5A3167CTAEX	TA	Lead Free and Green SOT23-5 (TA) Tape & reel	rE

Notes:

- E = Pb-free and Green
- Adding X Suffix= Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom.