imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

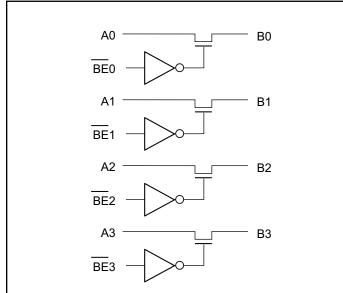
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

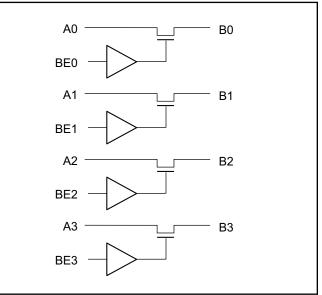
PI5C3125 PI5C3126

4-Bit Bus Switch with Individual Enables

Features


- Near-Zero propagation delay
- 5Ω switches connect inputs to outputs
- Direct bus connection when switches are ON
- Ultra Low Quiescent Power (0.1µA typical)
 Ideally suited for notebook applications
- Packaging (Pb-free & Green available):
 16-pin 150-mil wide plastic QSOP (Q)

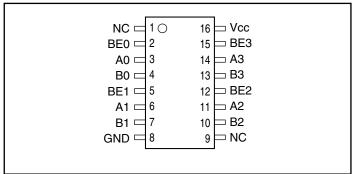
Description


Pericom Semiconductor's PI5C3125 and PI5C3126 are 4-bit Bus Switches designed with four individual 5 Ω bus switches with fast individual enables in an industry standard 74XX125/126 pinout. When enabled via the associated Bus Enable (BE) pin, the "A" pin is directly connected to the "B" pin for that particular gate. The bus switch introduces no additional propagation delay or additional ground bounce noise.

The PI5C3125 device has active LOW enables, and the PI5C3126 has active HIGH enables.

PI5C3125 Block Diagram

PI5C3126 Block Diagram


PI5C3125 16-Pin Configuration

	1 0 16	
BE0 🗆	2 15	🗇 BE3
A0 🗆	3 14	🗖 A3
B0 🗆	4 13	🗖 B3
BE1 🗆	5 12	BE2
A1 🗆	6 11	📥 A2
B1 🗆	7 10	🗖 B2
GND 🗆	8 9	⊨ NC
		-

Pin Description

Pin Name	Description	
BEn	Switch Enable (PI5C3125)	
BEn	Switch Enable (PI5C3126)	
A3-A0	Bus A	
В3-В0	Bus B	
V _{CC}	Power	
GND	Ground	

PI5C3126 16-Pin Configuration

Truth Table⁽¹⁾

PI5C3125 BEn	PI5C3126 BEn	An	Bn	V _{CC}	Function	
X ⁽²⁾	Х	Hi-Z	Hi-Z	GND	Disconnect	
Н	L	Hi-Z	Hi-Z	V _{CC}	Disconnect	
L	Н	Bn	An	V _{CC}	Connect	

Notes:

1. H = High Voltage Level, L = Low Voltage Level,

HI-Z = High Impedance, X = Don't Care

2. A pull-up resistor should be provided for power-up protection.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied40°C to +85°C
Supply Voltage to Ground Potential (Inputs & V _{CC} Only)0.5V to +7.0V
Supply Voltage to Ground Potential (Outputs & D/O Only)0.5V to +7.0V
DC Input Voltage
DC Output Current
Power Dissipation0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Lev	vel	2.0			V
V _{IL}	Input LOW Voltage	Guaranteed Logic LOW Lev	el	-0.5		0.8	v
I _{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$				±1	
I _{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$				±1	μA
I _{OZH}	High Impedance Output Current	$0 \le A, B \le V_{CC}$				±1	
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$			-0.7	-1.2	V
I _{OS}	Short Circuit Current ⁽³⁾	$A(B) = 0 V, B(A) = V_{CC}$			100		mA
V _H	Input Hysteresis at Control Pins				150		mV
		$V_{CC} = Min., V_{IN} = 0.0V,$	$I_{ON} = 48 m A$		5	7	
R _{ON}	Switch On-Resistance ⁽⁴⁾	$V_{CC} = Min., V_{IN} = 2.4V,$	$I_{ON} = 15 mA$		10	15	Ω
		$V_{\rm CC} = 4V, V_{\rm IN} = 2.4V,$	$I_{ON} = 15 mA$	16	22		

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 5V \pm 10\%$)

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$ ambient and maximum loading.

3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

4. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A, B) pins.

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур.	Max.	Units
C _{IN}	Input Capacitance			6	
C _{OFF}	A/B Capacitance, Switch Off	ch Off $V_{IN} = 0V$		6	pF
C _{ON}	A/B Capacitance, Switch On			8	

Notes:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditio	ons ⁽¹⁾	Min.	Typ ⁽²⁾	Max.	Units
I _{CC}	Quiescent Power Supply Current	V _{CC} = Max.	V _{IN} = GND or V _{CC}		0.1	3.0	μΑ
ΔI _{CC}	Supply Current per Input @ TTL HIGH	V _{CC} = Max.	$V_{IN} = 3.4 V^{(3)}$			2.5	mA
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	V _{CC} = Max., A and B Pins Open BEn/BEn = GND Control Input Toggling 50% Duty Cycle				0.25	mA/ MHz

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

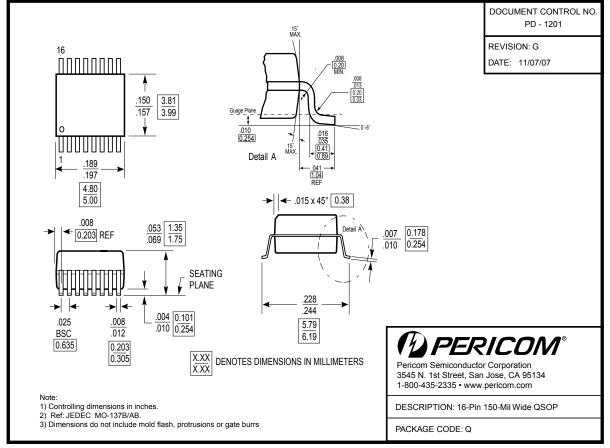
2. Typical values are at $V_{CC} = 5.0V$, +25°C ambient.

3. Per TTL driven input (V_{IN} = 3.4V, control inputs only); A and B pins do not contribute to I_{CC}.

4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

Switching Characteristics over Operating Range

Parameters	Description	Conditions	Co	Units		
1 al allietter 5	Description		Min.	Max.		
t _{PLH} t _{PHL}	Propagation Delay ^(1,2) A to B, B to A			0.25		
t _{PZH} t _{PZL}	Bus Enable Time	$C_{L} = 50 pF$ $R_{L} = 500 \Omega$	0.5	5.4	ns	
t _{PLZ} t _{PHZ}	Bus Disable Time		0.5	4.7		


Notes:

1. This parameter is guaranteed but not tested on Propagation Delays.

^{2.} The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Packaging Mechanical: 16-Pin QSOP (Q)

Ordering Information

Ordering Code	Package Type	Package Description
PI5C3125QE	Q	Pb-free & Green, 16-pin QSOP
PI5C3126QE	Q	Pb-free & Green, 16-pin QSOP

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free & Green
- Adding an X suffix = Tape/Reel