: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- Near-Zero propagation delay
- 25Ω series resistor termination
- 5Ω switches connect inputs to outputs
- Direct bus connection when switches are ON
- Ultra-low quiescent power ($0.2 \mu \mathrm{~A}$ typical)
- Ideally suited for notebook applications
- Pin compatible with QS34X245
- Industrial operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Packaging (Pb -free \& Green available):
- 80-pin 150 mil wide BQSOP (B)

Block Diagram

Description

Pericom Semiconductor's PI5C34X2245 is a 32-bit, 2-port bus switch. Four enable signals ($\overline{\mathrm{BE}} \mathrm{n}$) turn the switches on. The bus switch creates no additional propagational delay or additional ground bounce noise. The device has a built-in 25Ω resistor to reduce noise resulting from reflection, thus eliminating the need for an external terminating resistor.

Pin Configuration

NC $1 \bigcirc$	80	Vcc
Ao 2	79	BE1
$\mathrm{A}_{1} \mathrm{C}^{2}$	78	$\square \mathrm{Bo}$
A2 4	77	B1
А 3 - 5	76	$\square \mathrm{B} 2$
A4 6	75	B3
A5 7	74	B4
A6 8	73	B5
A7 9	72	- B_{6}
GND 10	71	$\square \mathrm{B7}$
NC 11	70	Vcc
A8 12	69	BE2
A9 13	68	$\square \mathrm{B} 8$
A10 14	67	$\square \mathrm{B9}$
A11 15	66	B10
A12 16	65	B11
A13 17	64	B12
A14 18	63	B13
A15 19	62	- B14
GND 20	61	B15
NC 21	60] Vcc
A16 22	59] $\overline{\mathrm{BE}} 3$
A17 23	58	$\square \mathrm{B} 16$
A18 24	57	B17
A19 25	56	B18
A20 26	55	7 B 19
A21-27	54	B20
A22 28	53	B21
A23 29	52	B22
GND 30	51	B23
NC 31	50] Vcc
A24 32	49] $\overline{\mathrm{BE}} 4$
A25 33	48	B24
A26 34	47	B25
A27 35	46	B26
A28 36	45	B27
A29 37	44	- B 28
А 30 - 38	43	В29
A31-39	42	В30
GND [40	41	B31

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Input Voltage .. 0.5 V to +7.0 V
DC Output Current... 120 mA
Power Dissipation.. 0.5 W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Truth Table ${ }^{(1)}$

Function	$\overline{\mathbf{B E}} \mathbf{n}$	A0 - 31
Disconnect	H	Hi-Z
Connect	L	$\mathrm{B} 0-3$

Notes:

Pin Description

Pin Name	I/O	Description
$\overline{\mathrm{BE}}_{\mathrm{X}}$	I	Bus Enable Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{31}$	I / O	Bus A
$\mathrm{B}_{0}-\mathrm{B}_{31}$	I / O	Bus B

1. $\mathrm{H}=$ High Voltage Level, $\mathrm{L}=$ Low Voltage Level Hi-Z = High Impedance

DC Electrical Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$)

Parameters	Description	Test Conditions ${ }^{(\mathbf{1})}$	Min.	Typ ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
$\mathrm{I}_{\text {IH }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			± 1	$\mu \mathrm{A}$
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND			± 1	
IOZH	High Impedance Output Current	$0-\mathrm{A}, \mathrm{B}-\mathrm{V}_{\mathrm{CC}}$			± 1	
V_{IK}	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.7	-1.2	V
IOS	Short Circuit Current ${ }^{(3)}$	$\mathrm{A}(\mathrm{B})=0 \mathrm{~V}, \mathrm{~B}(\mathrm{~A})=\mathrm{V}_{\mathrm{CC}}$	100			mA
R_{ON}	Switch On-Resistance ${ }^{(4)}$	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=48 \mathrm{~mA}$		28	40	Ω
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I} \mathrm{IN}=15 \mathrm{~mA}$		35	48	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Measured by the voltage drop between A and B pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (A, B) pins.

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameters ${ }^{(1)}$	Description	Test Conditions	Type	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	6	pF
CofF	A/B Capacitance, Switch Off		6	
$\mathrm{CON}^{\text {On }}$	A/B Capacitance, Switch On		12	

Notes:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(\mathbf{1)}}$	Min.	Typ ${ }^{(2)}$	Max.	Units
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max.	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{CC}		0.1	3.0
$\Delta \mathrm{I}_{\mathrm{CC}}$	Supply Current per Input @ TTL HIGH	$\mathrm{V}_{\mathrm{CC}}=$ Max.	$\mu \mathrm{V}$			
$\mathrm{I}_{\mathrm{IN}}=3.4 \mathrm{~V}^{(3)}$			2.5	mA		
	Supply Current per Input per MHz ${ }^{(4)}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., A \& B Pins Open BEn = GND, Control Input Tog- gling 50% Duty Cycle				

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$, control inputs only); A and B pins do not contribute to I_{CC}.
4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

Switching Characteristics over Operating Range

Parameter	Description	Conditions	Com.		Units
			Min.	Max.	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Propagation Delay }{ }^{(1,2)} \\ & \text { Ax to } \mathrm{Bx}, \mathrm{Bx} \text { to } \mathrm{Ax} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		1.25	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL }^{2} \\ & \hline \end{aligned}$	Bus Enable Time $\overline{\mathrm{BEx}}$ to Ax or Bx		1.5	7.5	
$t_{\text {PHZ }}$ tpLZ	Bus Disable Time $\overline{\mathrm{BE}} \mathrm{x}$ to Ax or Bx		1.5	5.5	

Notes:

1. This parameter is guaranteed but not tested on Propagation Delays.
2. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Packaging Mechanical: 80-Pin 150 Mil Wide Plastic BQSOP (B)

Ordering Information

Ordering Code	Package Code	Package Description
PI5C34X2245B	B	80-Pin 150 Mil Wide Plastic BQSOP
PI5C34X2245BE	B	Pb-free \& Green, 80-Pin 150 Mil Wide Plastic BQSOP

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free $\&$ Green
- Adding an X suffix = Tape/Reel

