

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

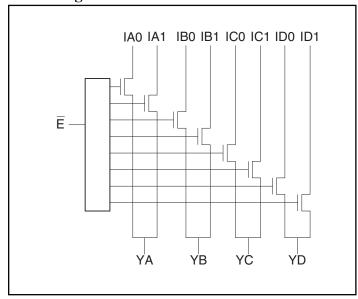
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CompactPCI[™] Hot Swap Pull-up Switch

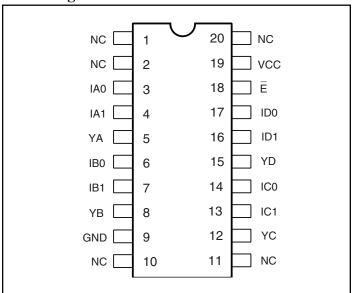
Features

- Supports CompactPCITM precharge voltage selection
- $3.3V/2.7k\Omega$, 5V/1ohm line termination selection
- Ultra-low quiescent current: 0.1 µA typical
- Low On-Resistance: 7Ω maximum
- Single supply operation up to $6.2V \pm 5\%$
- Wide bandwidth data rates: >200 Mbps
- · Mechanical relay replacement
- Packaging (Pb-free & Green available):
 - -Compact 20-pin TSSOP (L)

Description


The PI5L102L CompactPCI Hot Swap Pull-up switch is a Quad 1:2 multiplexer. It is designed to switch the 1V precharge bias voltage and $10k\Omega$ pull-up resistor connected to the CompactPCI bus signals during Hot Swap. Each switch can connect eight inputs (I_{An} to I_{Dn}) to a given pull-up voltage level.

In addition, the PI5L102 can be used to select 2.7 k Ω /3.3V or 1.0 kohm/5V pull-ups for the system card PCI signal lines.


ON resistance is a low 7Ω maximum and all eight switches are selected or disabled with a single CMOS/TTL compatible signal. For general-purpose applications, the PI5L102 can replace mechanical relays. In network systems, physical layer signals can be switched.

To reduce the insertion loss, the PI5L102 can be powered by a 6.2V Zener diode.

Block Diagram

Pin Configuration

Truth Table⁽¹⁾

Ē	YA	YB	YC	YD	Function		
Н	Hi-Z	HI-Z	Hi-Z	HI-Z	Disable		
L	IA0, IA1	IB0, IB2	IC0, IC1,	ID0, ID1	Enable		

Note:

1. H = High Voltage Level, L = Low Voltage Level

Pin Description

Pin Name	Description
IAn-IDn	Data Inputs
Ē	Enable
YA-YD	Data Outputs
GND	Ground
V _{CC}	Power

CompactPCITM is a registered trademark of the PCI Industrial Computer Manufacturers Group

1

PS8491E 09/30/04

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied
Supply Voltage to Ground Potential (Inputs & V _{CC} Only)0.5V to +7.0V
Supply Voltage to Ground Potential (Outputs & D/O Only) -0.5V to +7.0V
DC Input Voltage0.5V to +7.0V
DC Output Current
Power Dissipation

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = 0$ °C to +70°C, $V_{CC} = 6.2V$, +5%, -2%)

Parameters	Description	Description Test Conditions ⁽¹⁾		Typ ⁽²⁾	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level		_		V
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW Level		_	0.8	v
I_{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$	_	_	±1	
${ m I}_{ m IL}$	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$	_	_	±1	μΑ
I_{OZH}	High Impedance Output Current	$0 \le A, B \le V_{CC}$	_	_	±1	
V_{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$		-0.7	-1.2	V
I_{OS}	Short Circuit Current ⁽³⁾	$A(B) = 0V, B(A) = V_{CC}$	100	_	_	mA
V_{H}	Input Hysteresis at Control Pins		_	150		mV
Day	Switch On-Resistance ⁽⁴⁾	$V_{CC} = Min., V_{IN} = 0.0V, I_{ON} = 48mA$	5	7		Ω
R _{ON}	Switch On-Resistance	$V_{CC} = Min., V_{IN} = 2.4V, I_{ON} = 15mA$	10	15		

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 6.2V$, $T_A = 25$ °C ambient temperature.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by voltage drop between I and Y pins at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (I,Y) pins.

Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameters	Description	Test Conditions	Typ [.]	Max.	Units	
C_{IN}	Input Capacitance		4	6	a F	
C _{OFF} (Yx)	Y _X Capacitance Switch OFF	V - 0V	6	8		
C _{OFF} (IXN)	I _{XN} Capacitance, Switch OFF	$V_{IN} = 0V$	6	8	pF	
$C_{ON(YX)}^{(1, 2)}$	YX Capacitance, Switch ON		24	32		

Note:

- 1. This parameter is determined by device characterization, but not production tested.
- 2. Switch ON Capacitance accounts for capacitance of both switch channels (I_{X0} & I_{X1}) ON at one time.
- 3. X = A, B, C, or D; N = 0 or 1

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$	$V_{IN} = GND$ or V_{CC}		0.1	3.0	μΑ
ΔI_{CC}	Supply Current per Input @ TTL HIGH	$V_{\rm CC} = 5.5 \mathrm{V}$	$V_{IN} = 3.4V^{(3)}$	_		2.5	mA
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	V _{CC} = Max., Input Pins Open E = GND Control Input Toggling 50% Duty Cycle		_	_	0.25	mA/ MHz

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 6.2V$, $T_A = 25$ °C ambient temperature.
- 3. Per TTL driven input ($V_{IN} = 3.4V$, control inputs only); A and B pins do not contribute to I_{CC} .
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

Switching Characteristics over Operating Range

Donomotons	Description	Conditions ⁽¹⁾	Com.			IInita	
Parameters	Description	Conditions	Min.	Тур	Max.	Units	
t _{PHZ}	Bus Disable Time Ē to Y	$C_{L} = 50 pF$	0.5	_	6.0		
t _{PZH}	Bus Enable Time Ē to Y	$R_{\rm L} = 500\Omega$	0.5	_	5.8	ns	

Notes:

1. See test circuit and waveforms (Figure 2).

Applications

Logic Inputs

The logic control inputs can be driven up to +5.5V regardless of the supply voltage. For example, given a +5.0V supply, \overline{E} may be driven low to 0V and high to 5.5V. Driving \overline{E} Rail-to-Rail[®] minimizes power consumption.

Power-Supply Sequencing

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} before applying signals to the input/output or control pins.

V_{CC} Bias Voltage vs R_{ON}

To keep R_{ON} to a minimum, it is recommended that the V_{CC} voltage be increased to a voltage between +6.0V and +6.5V (see Figure 5). The R_{ON} vs V_{IN} curve shows the effect of On-Resistance and input voltage which is exponential. Ideally an input voltage between 0.2V and 3.6V will keep R_{ON} in the flat part of the curve (ΔR_{ON} or flatness is ~20hm).

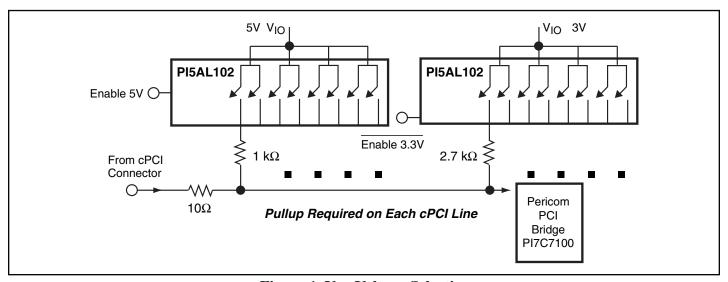


Figure 1. V_{IO} Voltage Selection

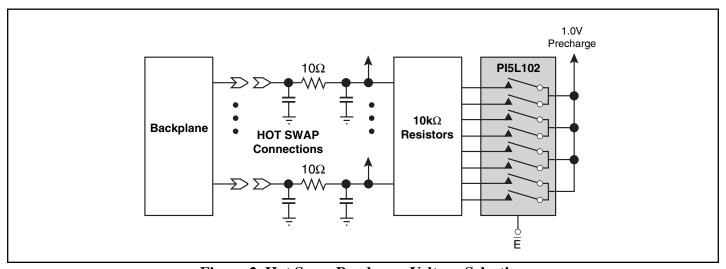


Figure 2. Hot Swap Precharge Voltage Selection

Test Circuits and Waveforms

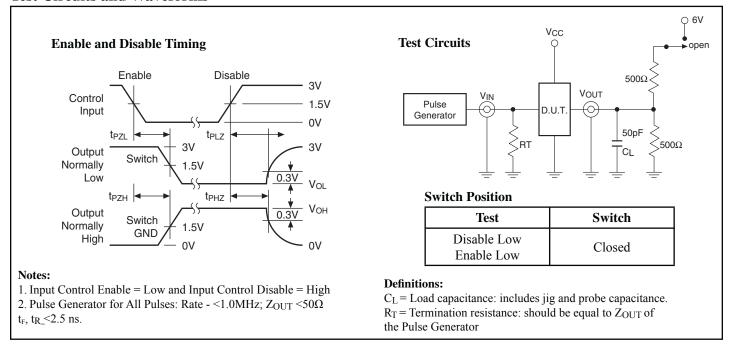


Figure 3. Switching Time

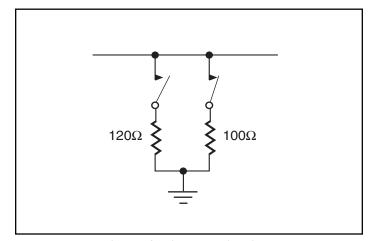


Figure 4. Line Termination

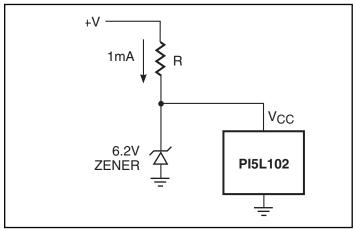


Figure 5. V_{CC} Bias Current



Figure 6. Ron vs Input Voltage over Temperature (Ron at $Vcc = 6.1V @ 75^{\circ}C$)

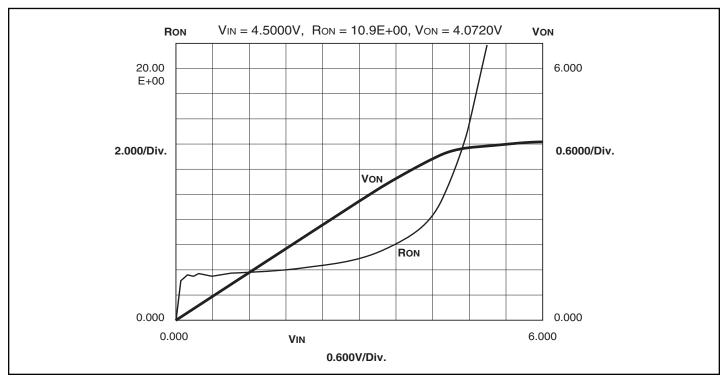
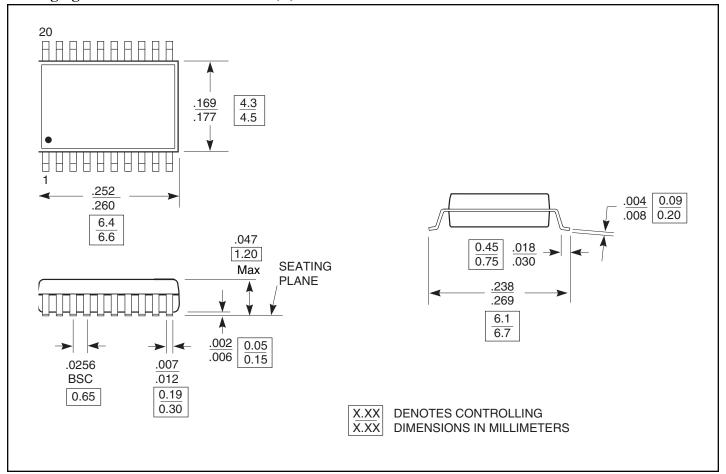



Figure 7 Ron vs Input Voltage (Ron at $V_{CC} = 6.2V @ 25^{\circ}C$)

Packaging Mechanical: 20-Pin TSSOP (L)

Ordering Information

Ordering Code	Package Code	Package Description			
PI5L102L	L	20-pin TSSOP			
PI5L102LE	L	Pb-free & Green, 20-pin TSSOP			

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com