

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low On-Resistance Wideband/Video Quad with Individual Control

Features:

High-performance, low-cost solution to switch between video sources

Wide bandwidth: 250 MHz
Low On-Resistance: 3Ω

• Low crosstalk at 10 MHz: -58 dB

• Ultra-low quiescent power (0.1µA typical)

• Single supply operation: +5.0V

· Fast switching: 10ns

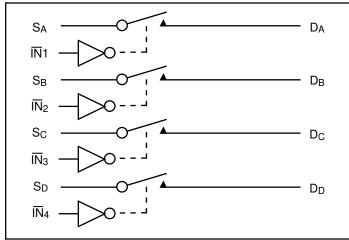
• High-current output: 100mA

· Functionally equivalent to QS4A101

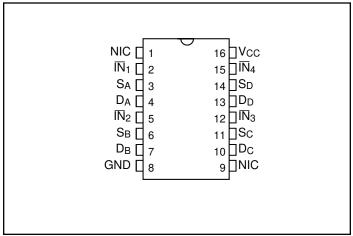
• Packaging (Pb-free & Green available):

- 16-pin 150-mil wide plastic QSOP (Q)

- 16-pin 150-mil wide plastic SOIC (W)


Description:

Pericom Semiconductor's PI5V332 is a true bidirectional Quad Video Switch that is recommended for RGB, S-Video, or composite video switching applications. The individual controls allow for video, Hsync, or Vsync enable or disable. The switch can be driven from a current output RAMDAC or voltage output composite video source.


Low On-Resistance and wide bandwidth make it ideal for video and other applications. Also this device has exceptionally high current capability which is far greater than most analog switches offered today. A single 5V supply is all that is required for operation.

The PI5V332 offers a high-performance, low-cost solution to switch between video sources.

Block Diagram

Pin Configuration

Truth Table

\overline{IN}_1	$\overline{\text{IN}}_2$	ĪN ₃	ĪN ₄	Function
0	X	X	X	S _A - D _A
X	0	X	X	S _B - D _B
X	X	0	X	S _C - D _C
X	X	X	0	S _D - D _D
1	1	1	1	Disconnect

Pin Description

1

Pin Name	Description		
S_X	Analog Video I/O (Usually Inputs)		
$\overline{\text{IN}}_{ ext{X}}$	Select Inputs		
DAX	Analog Video I/O (Usually Outputs)		
GND	Ground		
V _{CC}	Power Supply		

PS8118A 08/23/04

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied—40°C to +85°C
Supply Voltage to Ground Potential (Inputs & V _{CC} Only)0.5V to +7.0V
Supply Voltage to Ground Potential (Outputs & D/O Only) –0.5V to +7.0V
DC Input Voltage0.5V to +7.0V
DC Output Current
Power Dissipation

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 5V \pm 5\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ ⁽²⁾	Max.	Units
V _{ANALOG}	Analog Signal Range		0	_	2.0	
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0		_	V
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5	_	0.8	
I _{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$	_	_	±1	
I_{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$	_	_	±1	μΑ
IO	Analog Output Leakage Current	$0 \le S_1$, S_2 or $D \le V_{CC}$, Switch Off	_	_	±1	
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18 \text{ mA}$	_	-0.7	-1.2	V
Ios	Short Circuit Current ⁽³⁾	$S_1, S_2, D = 0V V_{CC}$	100	_	_	mA
V_{H}	Input Hysteresis at Control Pins		_	150		mV
D	Switch On-Resistance ⁽⁴⁾	$V_{CC} = Min., V_{OUT} = 0.975V$ $R_L = 75\Omega, I_{ON} = 13mA$	_	3	7	Ω
R _{ON}	Switch On-Resistance	$V_{CC} = M_{IN.}, V_{OUT} = 1.95V$ $R_L = 75\Omega, I_{ON} = 26\text{mA}$	_	7	10	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 5.0V$, $T_A = 25$ °C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between S₁, S₂, and D I/O pins at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the S₁, S₂, and D I/O pins. Vout is the voltage across R_L.

2

Dynamic Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 5V \pm 5\%$)

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Unit
ton	Turn On Time	$R_L = 75\Omega$, $C_L = 20$ pF, see Fig. 2		2.5	5	***
t _{OFF}	Turn Off Time	$R_L = 75\Omega$, $C_L = 20$ pF, see Fig. 2	_	1.1	5	ns
Bw ⁽¹⁾	-3 dB Bandwidth	$R_L = 150\Omega$, see Fig. 3	250	_	_	MHz
X _{TALK}	Crosstalk	$R_{IN} = 10\Omega$; $R_L = 150\Omega$, 10 MHz, see Fig. 3		-58	_	dB
D_G	Differential Gain	$R_L = 150\Omega$, $f = 3.58$ MHz, see Fig. 1	_	0.64	_	%
D_P	Differential Phase	$R_L = 150\Omega$, f = 3.58 MHz, see Fig. 1	_	0.27	_	Deg.
$C_{IN}^{(1)}$	Input/Enable Capacitance	$V_{IN} = 0V$, $f = 1$ MHz			6	
C _{OFF} ⁽¹⁾	Capacitance, Switch Off	$V_{IN} = 0V$, $f = 1$ MHz	_	_	6	pF
$C_{ON}^{(1)}$	Capacitance, Switch On	$V_{IN} = 0V$, $f = 1$ MHz	_		20	
O _{IRR}	Off Isolation	$R_L = 150\Omega$, 10 MHz, see Fig. 3		-38	_	dB

Notes:

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	$Typ^{(2)}$	Max.	Units
I _{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$	$IN = GND \text{ or } V_{CC}$	_	0.1	3.0	μΑ
ΔI_{CC}	Supply Current per Input @ TTL HIGH	V _{CC} = Max.	$IN = 3.4V^{(3)}$	_	_	2.5	mA
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	$V_{CC} = Max.,$ $S_1, S_2, \text{ and D Pins Open}$ $\overline{EN} = GND$ $Control Input Toggling$ $50\% Duty Cycle$		_	_	0.25	mA/ MHz

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 5.0V$, +25°C ambient.
- 3. Per TTL driven input ($V_{IN} = 3.4V$, control inputs only); S_1 , S_2 , and D pins do not contribute to I_{CC} .
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The S_1 , S_2 , and D I/O pins generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

^{1.} This parameter is determined by device characterization but is not production tested.

Definitions

Symbol	Description			
R _{ON}	Resistance between source and drain with switch in the ON state.			
I _O	Output leakage current measured at S ₁ , S ₂ , and D with the switch OFF.			
V _{IN}	Digital voltage at the IN pin that selects between S ₁ and S ₂ analog inputs.			
V_{EN}	A voltage that ENABLES the chip.			
C_{IN}	Capacitance at the digital inputs.			
C _{OFF}	Capacitance at analog I/O (S ₁ , S ₂ , D) with switch OFF.			
C _{ON}	Capacitance at analog I/O (S ₁ , S ₂ , D) with switch ON.			
V_{IH}	Minimum input voltage for logic HIGH.			
$V_{ m IL}$	Minimum input voltage for logic LOW.			
I _{IH} (I _{IL})	Input current of the digital input.			
I _{OS}	Minimum short circuit current for S1, S2 and D.			
t _{ON}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON. The peak analog voltage is 0.714V.			
t _{OFF}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF. The peak analog voltage is 0.714V.			
B_{W}	Frequency response of the switch in the ON state measured at 3dB down.			
X _{TALK}	Is an unwanted signal coupled from channel to channel. Measured in –dB. X_{TALK} = 20 LOG V_{OUT}/V_{IN} . This is non-adjacent crosstalk.			
D_{G}	Differential gain is the difference measurement between two bias levels, for instance analog input signals of 0V to 0.714V.			
D _P	Differential phase is the difference measurement between two bias levels, for instance analog input signals of 0V to 0.714V.			
O _{IRR}	Off isolation is the resistance (measured in –dB) between the input and output with the switch off (NO).			

4

Test Circuits

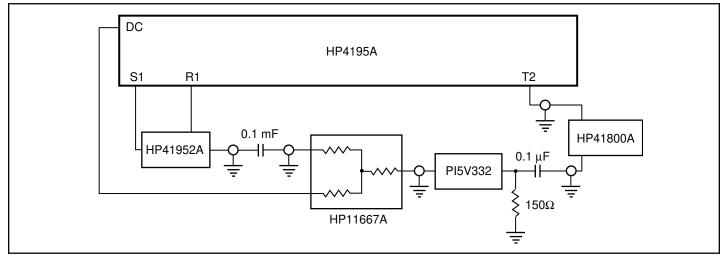


Figure 1. Differential Gain/Phase

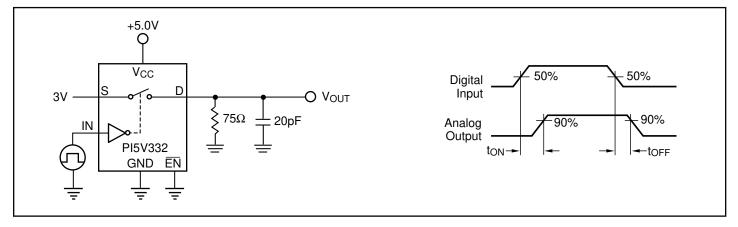


Figure 2. Switching Time

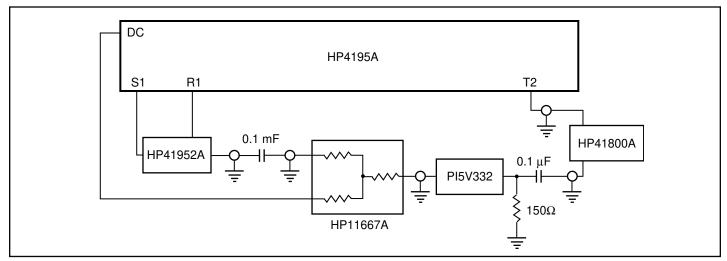
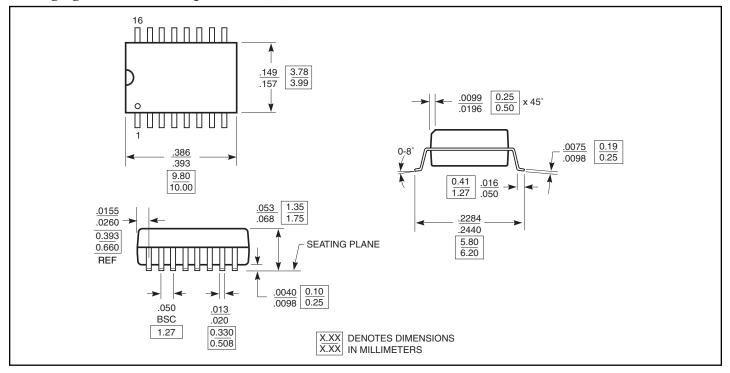
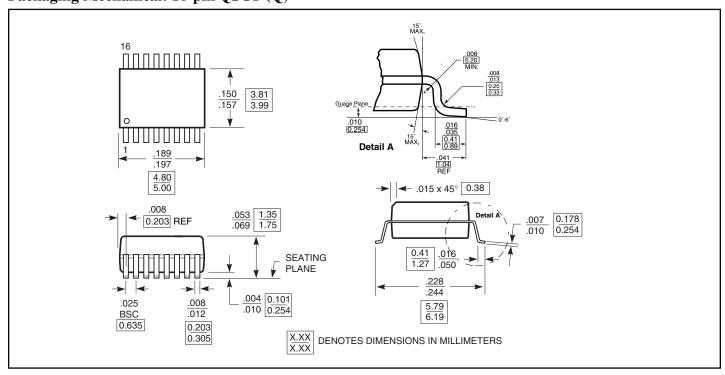



Figure 3. Gain/Phase, Crosstalk, Off-Isolation


5

Packaging Mechanical: 16-pin SOIC (W)

Packaging Mechanical: 16-pin QSOP (Q)

09/22/04

Ordering Information

Ordering Code	Package Code	Package Description
PI5V332W	W	16-pin SOIC
PI5V332WE	W	Pb-free & Green, 16-pin SOIC
PI5V332Q	Q	16-pin QSOP
PI5V332QE	Q	Pb-free & Green, 16-pin QSOP

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/