

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

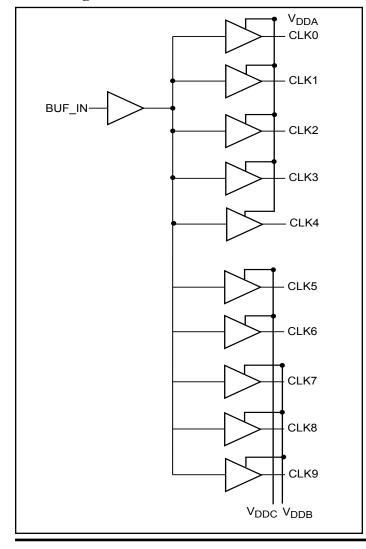
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.2V-2.5V, 250MHz, 1:10 Networking Clock Buffer


Features

- High-speed, low-noise, non-inverting split 1-10 buffer
- Maximum Frequency up to 250 MHz
- Low output skew < 60ps (Bank A, 2.5V)
- Low duty cycle distortion < 200ps
- Low propagation delay < 2.0ns (2.5V)
- Choice of 1.2V, 1.5V, 1.8V or 2.5V supply voltage on Bank A, Bank B, Bank C
- Industrial temperature range: -40°C to 85°C
- Packages (Pb-free & Green): 20-pin, TSSOP (L20)

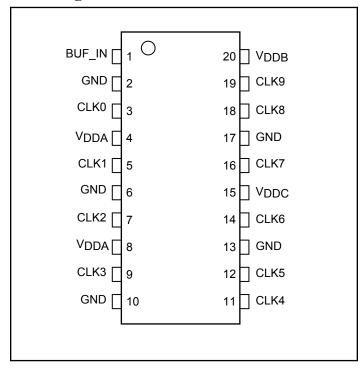
20-pin, SSOP (H20)

20-pin, QSOP (Q20)

Block Diagram

Description

The PI6C10810 is a 1.2V to 2.5V high-speed, low-noise 1-10 non-inverting clock buffer. The key goal in designing the PI6C10810 is to target networking applications that require low-skew, low-jitter, and high-frequency clock distribution.


Providing output-to-output skew as low as 60ps, the PI6C10810 is an ideal clock distribution device for synchronous systems. Designing synchronous networking systems requires a tight level of skew from a large number of outputs.

CLK0-4 operate from V_{DDA} supply.

CLK5-6 operate from V_{DDC} supply.

CLK7-9 operate from V_{DDB} supply.

Pin Configuration

Pin Description

Pin Name	Description
BUF_IN	Input
CLK [0:9]	Outputs
GND	Ground
$V_{DDA}, V_{DDB}, V_{DDC}$	Power (1.2V, 1.5V, 1.8V, 2.5V)

11-0015 1 PS9014A 02/23/11

2.5V Absolute Maximum Ratings (Above which the useful life may

be impaired. For user guidelines only, not tested.)

Storage Temperature	65°C to +150°C
V _{DD} Voltage	0.5V to +3.6V
Output Voltage (max. 3.6V)	0.5V to V _{DD} +0.5V
Input Voltage (max 3.6V)	0.5V to V _{DD} +0.5V

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2.5V DC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 2.5V \pm 0.2V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾)	Min.	Typ. (2)	Max.	Units
V_{DD}	Supply Voltage			2.3	2.5	2.7	
V_{IH}	Input HIGH Voltage	Logic HIGH level		1.7		3.6	V
$V_{ m IL}$	Input LOW Voltage	Logic LOW level		-0.3		0.7]
I_{I}	Input Current	$V_{DD} = Max$, $Vin = V_{DD}$ or GND	I pin			15	μА
	Output High Voltage	$V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -1 \text{mA}$	2.0			
V_{OH}			$I_{OH} = -2mA$	1.7			
			$I_{OH} = -8mA$	1.7			$\left \begin{array}{c} v \end{array} \right $
	Output LOW Voltage		$I_{OL} = 1mA$			0.1]
$V_{ m OL}$		$V_{DD} = Min., V_{IN} - V_{IH} \text{ or } V_{IL}$	$I_{OL} = 2mA$			0.2	
N			$I_{OL} = 8mA$			0.2	

Notes:

- 1. For Max. or Min. conditions, use appropriate operating range values.
- 2. Typical values are at $V_{DD} = 2.5V$, +25°C ambient and maximum loading.

2.5V AC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 2.5V \pm 0.2V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Description			Тур	Max.	Units
F _{IN}	Input Frequency			0		250	MHz
t_{PLH} , t_{PHL} ⁽²⁾	Propagation Delay BUF_IN	N to CLKn		1.0	1.5	2.0	
	Output to Output Skew	Bank A (CLK0 - CLK4)		-60		60	
$t_{SK(O)}^{(3)}$	between any two outputs of the same device @	Bank C (CLK5 - CLK6)		-30		30	
	same transition	Bank B (CLK7 - CLK9)	$R_{L} = 500$ -Ohm, $C_{L} =$	-150		150	
$t_{SK(P)}^{(3)}$	Pulse Skew between opposite transitions (t _{PHL} -t _{PLH}) of the same output		3pF, 125 MHz Outputs are measured @ VDD/2		100	200	ps
$t_{SK(T)}^{(3)(5)}$	Part to Part Skew between two identical outputs of different parts on the same board ⁽⁴⁾		V DD/ Z			300	
t _{dc_in}	Duty Cycle In @ Ins edge	rate		45		55	%
t _{dc_out}	Duty Cycle Out			40		57.5	70
t _j (5)	Additive Jitter					50	ps
t _{R(O)}	Output Rise Time 20%-80% CLKn		$R_{L} = 500$ -Ohm, $C_{L} =$		0.5	0.7	ns
$t_{F(O)}$	Output Fall Time 80%-20%	6 CLKn	3pF		0.5	0.7	115

Notes:

5. Guaranteed by design

^{1.} See test circuit and waveforms.

^{2.} Minimum limits are guaranteed but not tested on Propagation Delays.

^{3.} Skew measured at worst case temperature (max. temp).

^{4.} Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

1.8V Absolute Maximum Ratings (Above which the useful life may be impaired. For user guidelines only, not tested.)

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

1.8V DC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.8V \pm 0.15V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. (2)	Max.	Units
V_{DD}	Supply Voltage			1.65	1.8	1.95	
$V_{ m IH}$	Input HIGH Voltage	Logic HIGH level		1.1		2.7	V
$V_{ m IL}$	Input LOW Voltage	Logic LOW level	Logic LOW level			0.35*V _{DD}	V
I_{I}	Input Current ⁽³⁾	$V_{DD} = Max,$ $Vin = V_{DD}$ or GND	I pin			15	μА
Vor	Output High Voltage	gh Voltage $V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -2mA$	1.35			
$V_{ m OH}$			$I_{OH} = -8mA$	1.2			V
Vor	Output LOW Voltage	to di OW Valence V — Min V — V — NV	$I_{OL} = 2mA$			0.1	v
$V_{ m OL}$		$V_{DD} = Min., V_{IN} - V_{IH} \text{ or } V_{IL}$	$I_{OL} = 8mA$			0.2	

Notes:

- 1. For Max. or Min. conditions, use appropriate operating V_{DD} and Ta values.
- 2. Typical values are at $V_{DD} = 1.8V$, $+25^{\circ}C$ ambient and maximum loading.
- 3. This parameter is determined by device characterization but is not production tested.

1.8V AC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.8V \pm 0.15V$, $T_A = -40^{\circ}$ to 85° C)

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency			0		200	MHz
t _{PLH} , t _{PHL} ⁽²⁾	Propagation Delay BU	JF_IN to CLKn		1.0	2.3	2.8	
	Output to Output	Bank A (CLK0 - CLK4)		-60		60	
$t_{SK(O)}^{(3)}$	Skew between any two outputs of the	Bank C (CLK5 - CLK6)		30		30]
	same device @ same transition	Bank B (CLK7 - CLK9)	$C_L = 3pF, R_L = 500-Ohm, 125 MHz$	-200		200	ps
$t_{SK(P)}^{(3)}$	Pulse Skew between opposite transitions (t _{PHL} -t _{PLH}) of the same output		Outputs are measured @ V _{DD} /2		100	200	
t _{SK(T)} (3)(5)		Part to Part Skew between two identical outputs of different parts on the same board ⁽⁴⁾				300	
t _{dc_in}	Duty Cycle In @ 1 ns	edge rate]	45		55	%
t _{dc_out}	Duty Cycle Out			40		57.5	70
t _j (5)	Additive Jitter					50	ps
t _{R(o)}	Output Rise Time 20%	% - 80% CLKn			0.5	0.8	
t _{F(o)}	Output Fall Time 80%	5 - 20% CLKn			0.5	0.8	ns

Notes:

- See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Skew measured at worst case temperature (max. temp).
- 4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 5. Guaranteed by design.

11-0015 3 PS9014A 02/23/11

1.5V Absolute Maximum Ratings (Above which the useful life may

be impaired. For user guidelines only, not tested.)

Storage Temperature	65°C to +150°C
V _{DD} Voltage	
Output Voltage (max. 3.6V)	0.5V to V _{DD} +0.5V
Input Voltage (max 3.6V)	0.5V to V _{DD} +0.5V

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

1.5V DC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.5V \pm 0.1V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾	Test Conditions ⁽¹⁾		Typ. (2)	Max.	Units
V_{DD}	Supply Voltage			1.4	1.5	1.6	
V_{IH}	Input HIGH Voltage	Logic HIGH level	Logic HIGH level			V_{DD}	V
$V_{ m IL}$	Input LOW Voltage	Logic LOW level	Logic LOW level			$0.35 \times V_{DD}$	V
I_{I}	Input Current	$V_{DD} = Max$, $Vin = V_{DD}$ or GND	I pin			15	μA
N/	Output High Voltage	$V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -2mA$	1.05			
V_{OH}			$I_{OH} = -8mA$	1.75			$\mid v \mid$
17	Output LOW Voltage	Output LOW Voltage $V_{DD} = Min., V_{IN} - V_{IH} \text{ or } V_{IL}$	$I_{OL} = 2mA$			0.35	
$V_{ m OL}$			$I_{OL} = 8mA$			0.65	

Notes:

- 1. For Max. or Min. conditions, use appropriate operating range values.
- 2. Typical values are at $V_{DD} = 1.5V$, $+25^{\circ}C$ ambient and maximum loading.

1.5V AC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.5V \pm 0.1V$, $T_A = -40^{\circ}$ to 85° C)

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency			0		200	MHz
$t_{\rm R}/t_{\rm F}$	CLKn Rise/Fall Time		20% to 80%			1.0	ns
t _{PLH} , t _{PHL} (2)	Propagation Delay BUF_1	N to CLKn		2.0	2.8	3.5	ns
	Output to Output Skew	Bank A (CLK0 - CLK4)		-100		100	
$t_{SK(O)}^{(3)}$	between any two outputs of the same device @	Bank C (CLK5 - CLK6)		-50		50	
	same transition	Bank B (CLK7 - CLK9)	$C_L = 3pF$,	-200		200	
$t_{SK(P)}^{(3)}$	Pulse Skew between opposite transitions (t _{PHL} -t _{PLH}) of the same output		$R_L = 500$ -Ohms, 125 MHz Outputs are		100	200	ps
$t_{SK(T)}^{(3)(5)}$	Part to Part Skew between different parts on the same	two identical outputs of board ⁽⁴⁾	measured @ V _{DD} /2			300	
t _{dc_in}	Duty Cycle In @ Ins edge	rate		45		55	%
t _{dc_out} (5)	Duty Cycle Out			40		60	70
tj	Additive Jitter					50	ps
t _{R(o)}	Output Rise Time 20% - 8	80% CLKn			0.6	0.9	
$t_{F(o)}$	Output Fall Time 80% - 2	0% CLKn			0.6	0.9	ns

Notes:

- See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Skew measured at worst case temperature (max. temp).
- 4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 5. Guaranteed by design.

1.2V Absolute Maximum Ratings (Above which the useful life may

be impaired. For user guidelines only, not tested.)

Storage Temperature	65°C to +150°C
V _{DD} Voltage	0.5V to +3.6V
Output Voltage (max. 3.6V)	0.5V to V _{DD} +0.5V
Input Voltage (max 3.6V)	0.5V to V _{DD} +0.5V

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

1.2V DC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , V_{DDC} = 1.2V ± 0.1V, T_A = -40° to 85°C)

Parameters	Description	Test Conditions ⁽	1)	Min.	Тур. (2)	Max.	Units
V_{DD}	Supply Voltage			1.1	1.2	1.3	
$V_{ m IH}$	Input HIGH Voltage	Logic HIGH leve	1	$0.65 \times V_{DD}$		V _{DD} +0.3	V
$V_{ m IL}$	Input LOW Voltage	Logic LOW level	Logic LOW level			$0.35 \times V_{DD}$	V
II	Input Current	$V_{DD} = Max$, $Vin = V_{DD}$ or GND	I pin			15	μА
V	Output High Voltage	V	$I_{OH} = -2mA$	1.05			
V_{OH}	Output High Voltage	$V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -8mA$	1.75			$\mid V \mid$
Vor	Output LOW Voltage	e $V_{DD} = Min., V_{IN} - V_{IH} \text{ or } V_{IL}$	$I_{OL} = 2mA$			0.35	
$V_{ m OL}$			$I_{OL} = 8mA$			0.65	

Notes:

- 1. For Max. or Min. conditions, use appropriate operating range values.
- 2. Typical values are at $V_{DD} = 1.2V$, $+25^{\circ}C$ ambient and maximum loading.

1.2V AC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.2V \pm 0.1V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency			0		150	MHz
$t_{PLH,} t_{PHL}^{(2)}$	Propagation Delay BUI	F_IN to CLKn		4	5	6	ns
	Output to Output	Bank A (CLK0 - CLK4)		-150		150	
$t_{SK(O)}^{(3)}$	Skew between any two outputs of the	Bank C (CLK5 - CLK6)	G 1.F.P.	-50		50	
tSK(O)\	same device @ same transition	Bank B (CLK7 - CLK9)	$C_L = 3pF, R_L =$ 500-Ohm, 125 MHz Outputs are measured	-300		300	ps
$t_{SK(P)}^{(3)}$	Pulse Skew between opposite transitions (t _{PHL} -t _{PLH}) of the same output		$@V_{\mathrm{DD}}/2$		200	300	
$t_{SK(T)}^{(3)(5)}$	Part to Part Skew betwee of different parts on the	een two identical outputs same board ⁽⁴⁾				300	
t _{DC_IN}	Duty Cycle In @ 1ns ed	dge rate		45		55	%
t _{DC_OUT}	Duty Cycle Out			40		60	70
$t_j^{(5)}$	Additive Jitter					50	ps
$t_{R(o)}$	Output Rise Time 20%	- 80% CLKn			0.9	1	ne
$t_{F(o)}$	Output Fall Time 80%	- 20% CLKn			0.9	1	ns

Notes:

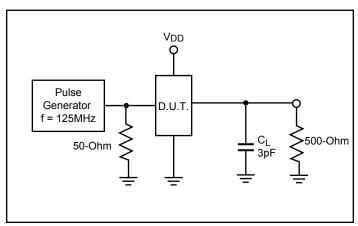
- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Skew measured at worst case temperature (max. temp).
- 4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 5. Guaranteed by design.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾			Typ. (2)	Max.	Units
I _{DDQ}	Quiescent Power Supply Current	$V_{DDA} = V_{DDB} = V_{DDC} = 2.7V$	No Load. F _{IN} = 40MHz (Bank A, Bank B, Bank C included)		16		
		$V_{DDA} = V_{DDB} = V_{DDC} = 1.95V$			12		4
		$V_{DDA} = V_{DDB} = V_{DDC} = 1.6V$			8		mA
		$V_{DDA} = V_{DDB} = V_{DDC} = 1.2V$			8		
I _{OS}	Short Circuit Current	V _{DDA} = V _{DDB} = V _{DDC}	2.7V 1.95V 1.6V 1.2V		±80 ±50 ±35 ±15		mA

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics.
- 2. Typical values are at $V_{DD} = 1.2V$, 1.5V, 1.8V or 2.5V, and +25°C ambient.
- 3. Per TTL driven input ($V_{IN} = V_{DD} 0.6V$); all other inputs at V_{DD} or GND.

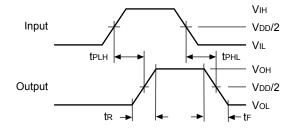

Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
C_{IN}	Input Capacitance	$V_{IN} = 0V$	3.0	4	nE
C_{OUT}	Output Capacitance	$V_{OUT} = 0V$	_	6	рF

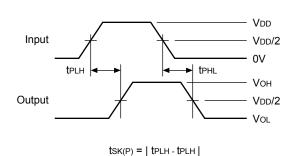
Note:

1. This parameter is determined by device characterization but is not production tested.

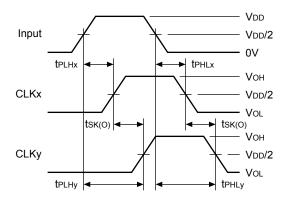
Test Circuits for All Outputs


Definitions:

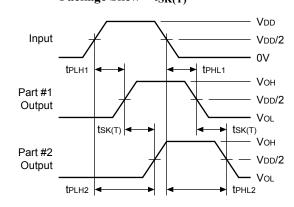
 C_L = Load capacitance: includes jig and probe capacitance.



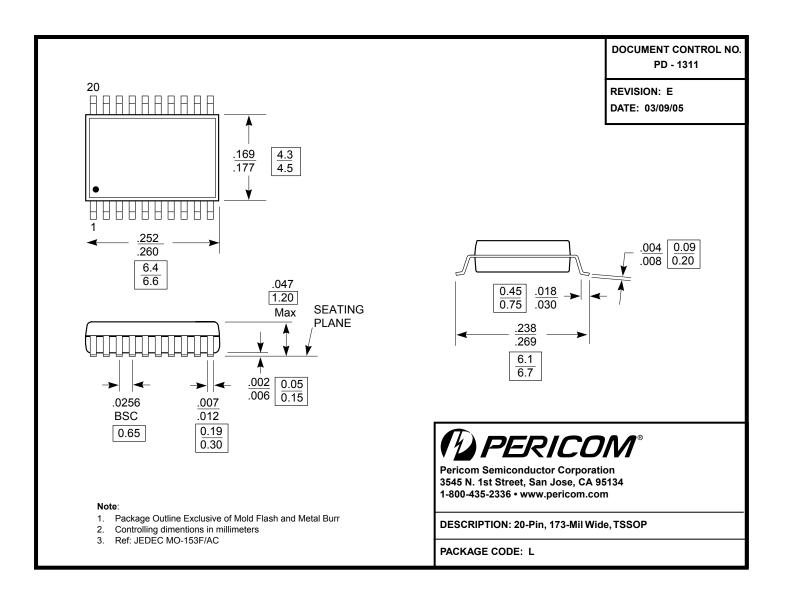
Switching Waveforms


Propagation Delay

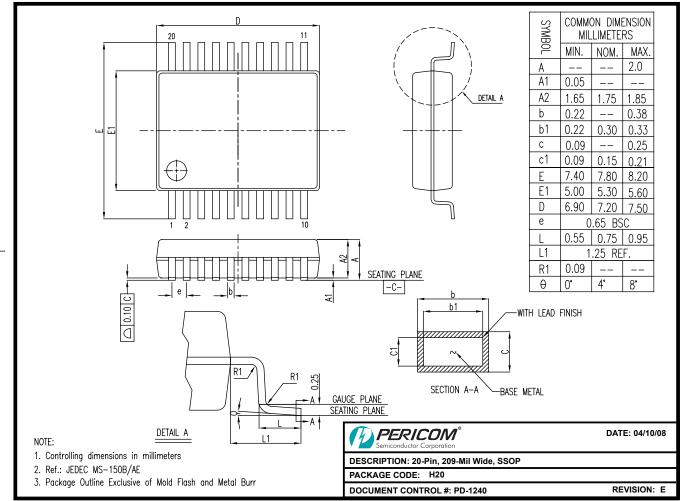
Pulse Skew $-t_{SK(P)}$



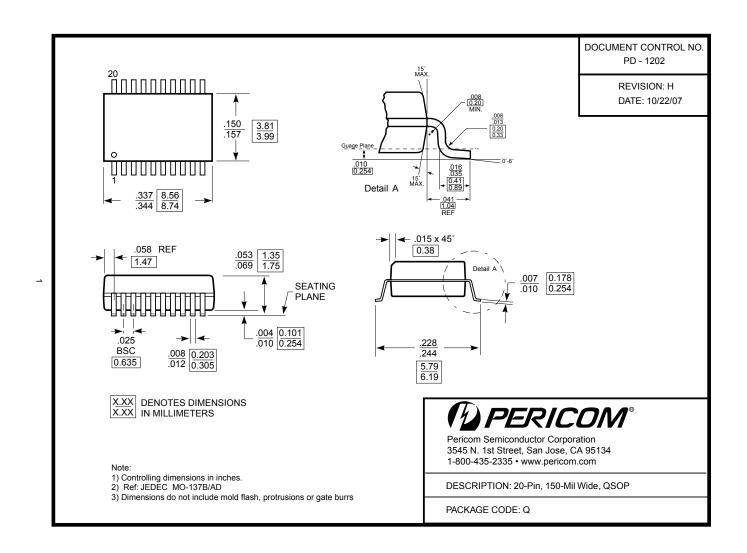
Output Skew – $t_{SK(O)}$


tsk(O) = | tplhy - tplhx | or | tphly - tphlx |

Package Skew - t_{SK(T)}



tsk(T) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|



08-01**4**0

11-0015 9 PS9014A 02/23/11

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Type
PI6C10810LE	L	Pb-free & Green, 20-pin 173-mil wide TSSOP
PI6C10810HE	Н	Pb-free & Green, 20-pin 209-mil wide SSOP
PI6C10810QE	Q	Pb-free & Green, 20-pin 150-mil wide QSOP

Notes

- 1. Thermal Characteristics can be found on the web at www.pericom.com/packaging/
- 2. E = Lead-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com