

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

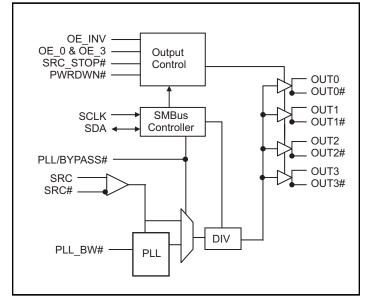
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

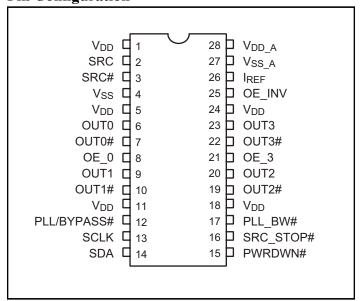
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1:4 Clock Driver for Intel PCIe® Chipsets


Features

- Phase jitter filter for PCIe® 2.0 application
- · Four Pairs of Differential Clocks
- Low skew < 50ps
- Low jitter < 50ps cycle-to-cycle
- < 1 ps additive RMS phase jitter
- Output Enable for all outputs
- · Outputs tristate control via SMBus
- · Programmable PLL Bandwidth
- 100 MHz PLL Mode operation
- 100 400 MHz Bypass Mode operation
- 3.3V Operation
- Packaging (Pb-free and Green):
 - \rightarrow 28-Pin SSOP (H28)
 - \rightarrow 28-Pin TSSOP (L28)


Description

Pericom Semiconductor's PI6C20400A is a PCIe® 2.0 compliant high-speed, low-noise differential clock buffer designed to be companion to PI6C410BS. The device distributes the differential SRC clock from PI6C410BS to four differential pairs of clock outputs either with or without PLL. The clock outputs are controlled by input selection of SRC_STOP#, PWRDWN# and SMBus, SCLK and SDA. When input of either SRC_STOP# or PWRDWN# is low, the output clocks are Tristated. When PWRDWN# is low, the SDA and SCLK inputs must be Tri-stated.

Block Diagram

Pin Configuration

14-0195 1 www.pericom.com 03/27/13

Pin Descriptions

Pin Name	Type	Pin No	Description
SRC & SRC#	Input	2, 3	0.7V Differential SRC input from PI6C410 clock synthesizer
OE_0 & OE_3	Input	8, 21	3.3V LVTTL input for enabling outputs, active high. OE_0 for OUT0 / OUT0# OE_3 for OUT3 / OUT3#
OE_INV	Input	25	3.3V LVTTL input for inverting the OE, SRC_STOP# and PWRDWN# pins. When 0 = same stage When 1 = OE_0, OE_3, SRC_STOP#, PWRDWN# inverted.
OUT[0:3] & OUT[0:3]#	Output	6, 7, 9, 10, 19, 20, 22, 23	0.7V Differential outputs
PLL/BYPASS#	Input	12	3.3V LVTTL input for selecting fan-out of PLL operation.
SCLK	Input	13	SMBus compatible SCLOCK input
SDA	I/O	14	SMBus compatible SDATA
IREF	Input	26	External resistor connection to set the differential output current
SRC_STOP#	Input	16	3.3V LVTTL input for SRC stop, active low
PLL_BW#	Input	17	3.3V LVTTL input for selecting the PLL bandwidth
PWRDWN#	Input	15	3.3V LVTTL input for Power Down operation, active low
V_{DD}	Power	1, 5, 11, 18, 24	3.3V Power Supply for Outputs
VSS	Ground	4	Ground for Outputs
VSS_A	Ground	27	Ground for PLL
VDD_A	Power	28	3.3V Power Supply for PLL

Serial Data Interface (SMBus)

This part is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	1	0	0/1

Data Protocol

1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit
Start bit	Slave Addr	R/W	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	 Data Byte N - 1	Ack	Stop bit

Notes:

1. Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

Data Byte 0: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Outputs Mode 0 = Divide by 2 1 = Normal	RW	1 = Normal	OUT[0:3], OUT[0:3]#	NA
1	PLL/BYPASS# 0 = Fanout 1 = PLL	RW	1 = PLL	OUT[0:3], OUT[0:3]#	NA
2	PLL Bandwidth 0 = High Bandwidth, 1 = Low Bandwidth	RW	1 = Low	OUT[0:3], OUT[0:3]#	NA
3	Reserved				NA
4	Reserved				NA
5	Reserved				NA
6	SRC_STOP# 0 = Driven when stopped 1 = Tristate	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	NA
7	PWRDWN# 0 = Driven when stopped 1 = Tristate	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	NA

Data Byte 1: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
1	OUTPUTS enable	RW	1 = Enabled	OUT0, OUT0#	NA
2	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT1, OUT1#	NA
3	Reserved				NA
4	Reserved				NA
5	OUTPUTS enable	RW	1 = Enabled	OUT2, OUT2#	NA
6	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT3, OUT3#	NA
7	Reserved				NA

Data Byte 2: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
1	Allow control of OUTPUTS with	RW	0 = Free running	OUT0, OUT0#	NA
2	assertion of SRC_STOP# $0 = \text{Free running}$ $1 = \text{Stopped with SRC_Stop#}$	RW	0 = Free running	OUT1, OUT1#	NA
3	Reserved				NA
4	Reserved				NA
5	Allow control of OUTPUTS with	RW	0 = Free running	OUT2, OUT2#	NA
6	assertion of SRC_STOP# $0 = \text{Free running}$ $1 = \text{Stopped with SRC_Stop#}$	RW	0 = Free running	OUT3, OUT3#	NA
7	Reserved				NA

Data Byte 3: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0		RW			
1		RW			
2		RW			
3	Danamad	RW			
4	Reserved	RW			
5		RW			
6		RW			
7		RW			

Data Byte 4: Pericom ID Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Pin
0		R	0	NA	NA
1		R	0	NA	NA
2		R	0	NA	NA
3	Davissan ID	R	0	NA	NA
4	Pericom ID	R	0	NA	NA
5		R	1	NA	NA
6		R	0	NA	NA
7		R	0	NA	NA

Functionality

PWRDWN#	OUT	OUT#	SRC_Stop#	OUT	OUT#
1	Normal	Normal	1	Normal	Normal
0	$I_{REF} \times 2$ or Float	Low	0	$I_{REF} \times 6$ or Float	Low

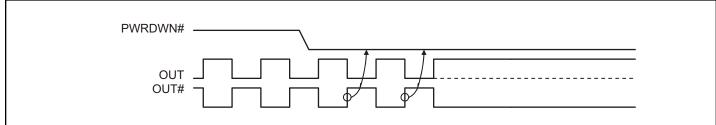


Figure 1. Power down sequence

Power Down (PWRDWN# De-assertion)

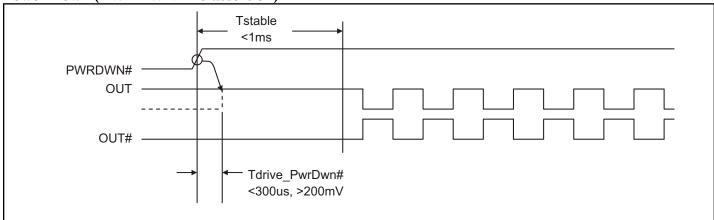


Figure 2. Power down de-assert sequence

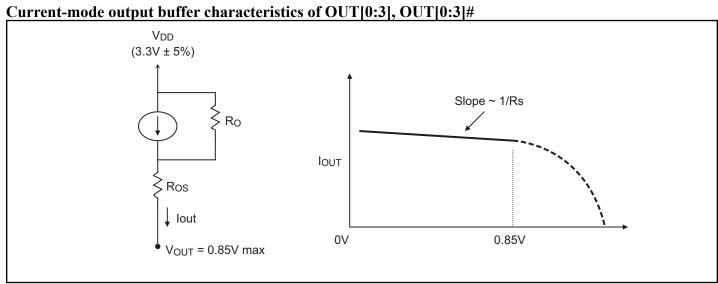


Figure 9. Simplified diagram of current-mode output buffer

Differential Clock Buffer characteristics

Symbol	Minimum	Maximum
R_{O}	3000Ω	N/A
R _{OS}	unspecified	unspecified
$ m V_{OUT}$	N/A	850mV

Current Accuracy

Symbol	Conditions	Configuration	Load	Min.	Max.
I _{OUT}	$V_{DD} = 3.30 \pm 5\%$	$R_{REF} = 475\Omega \ 1\%$ $I_{REF} = 2.32 \text{mA}$	Nominal test load for given configuration	-12% I _{NOMINAL}	+12% I _{NOMINAL}

Note:

Differential Clock Output Current

Board Target Trace/Term Z	Reference R, Iref = $V_{DD}/(3xRr)$	Output Current	V _{OH} @ Z
100Ω (100Ω differential ≈ 15% coupling ratio)	$R_{REF} = 475\Omega \ 1\%,$ $I_{REF} = 2.32mA$	$I_{OH} = 6 \times I_{REF}$	0.7V @ 50

^{1.} I_{NOMINAL} refers to the expected current based on the configuration of the device.

Absolute Maximum Ratings (Over operating free-air temperature range)

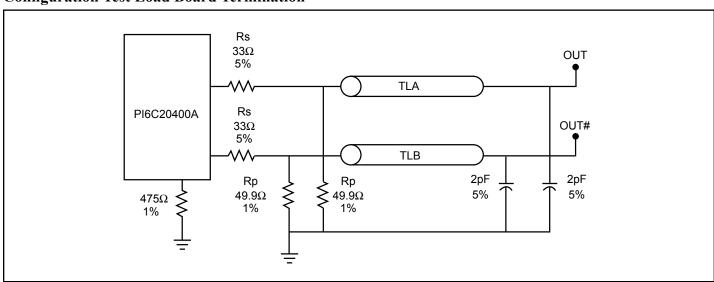
Symbol	Parameters	Min.	Max.	Units
$V_{\mathrm{DD_A}}$	3.3V Core Supply Voltage	-0.5	4.6	
V_{DD}	3.3V I/O Supply Voltage	-0.5	4.6	
V_{IH}	Input High Voltage		4.6	'
$V_{ m IL}$	Input Low Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
V_{ESD}	ESD Protection	2000		V

Note:

DC Electrical Characteristics ($V_{DD} = 3.3 \pm 5\%$, $V_{DD A} = 3.3 \pm 5\%$)

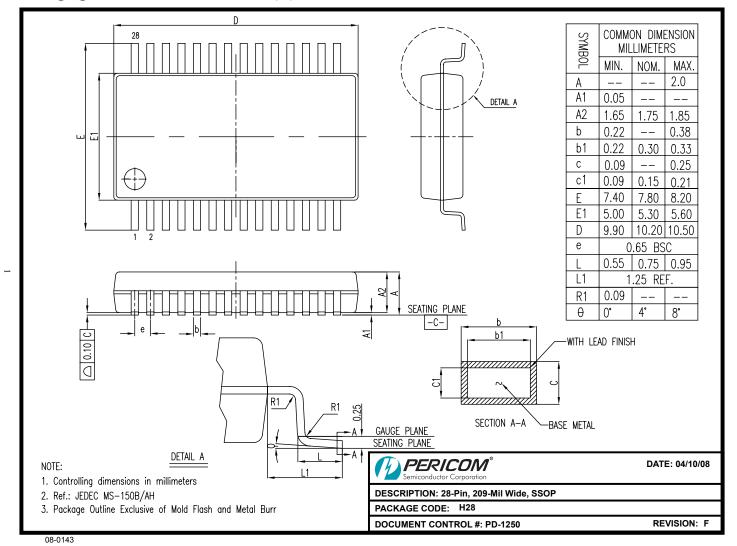
Symbol	Parameters	Condition	Min.	Max.	Units	
$V_{\mathrm{DD_A}}$	3.3V Core Supply Voltage		3.135	3.465	V	
$V_{ m DD}$	3.3V I/O Supply Voltage		3.135	3.465		
$V_{ m IH}$	3.3V Input High Voltage	$V_{ m DD}$	2.0	$V_{\rm DD} + 0.3$		
$ m V_{IL}$	3.3V Input Low Voltage		$V_{SS}-0.3$	0.8		
${ m I}_{ m IL}$	Input Leakage Current	$0 < V_{IN} < V_{DD}$	-5	+5	μΑ	
$ m V_{OH}$	3.3V Output High Voltage	$I_{OH} = -1 \text{mA}$	2.4		V	
$V_{ m OL}$	3.3V Output Low Voltage	$I_{OL} = 1 \text{mA}$		0.4		
T	0.4.411.1.0	$I_{OH} = 6 \times I_{REF}$	12.2		mA	
I_{OH}	Output High Current	$I_{REF} = 2.32 \text{mA}$		15.6		
C_{IN}	Input Pin Capacitance		2	5	Г	
$C_{ m OUT}$	Output Pin Capacitance			6	pF	
L_{PIN}	Pin Inductance			7	nН	
I _{DD(BYPASS)}	Power Supply Current (PLL Bypass)	$V_{DD} = 3.465V, F_{CPU} = 100MHz$		90		
I _{DD}	Darriag Crosseller Crossesset	$V_{DD} = 3.465V$	Bypass mode	100	mA	
	Power Supply Current	$F_{CPU} = 100MHz$	PLL mode	130		
I_{SS}	Power Down Current	Driven outputs		40		
I_{SS}	Power Down Current	Tristate outputs		12		
$T_{\mathbf{A}}$	Ambient Temperature		-40	85	°C	

^{1.} Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

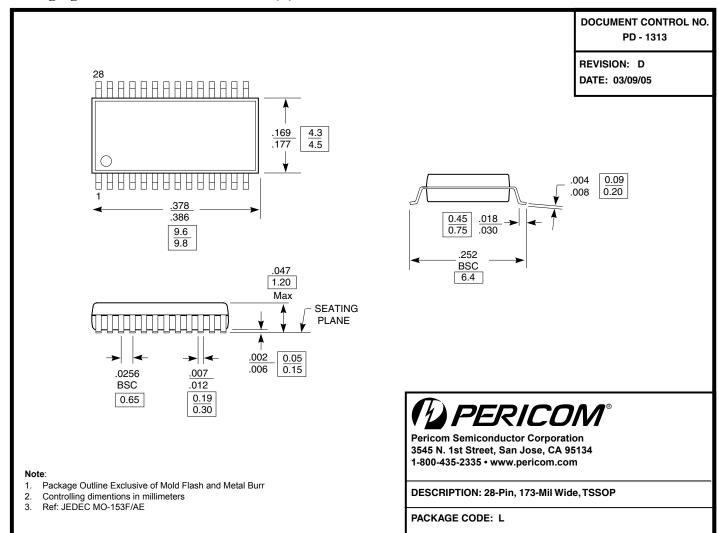

AC Switching Characteristics (V_{DD} = 3.3±5%, V_{DD_A} = 3.3±5%)

Symbol	Parameters	Min	Max.	Units	Notes
F _{IN}	PLL Mode	95	105	MHz	
	Bypass Mode	100	400	MHz	
Trise / Tfall	Rise and Fall Time (measured between 0.175V to 0.525V)	175	700	ps	2
DT _{rise} / DT _{fall}	Rise and Fall Time Variation		125	ps	2
T_{pd}	PLL Mode		±250	ps	
	Non-PLL Mode	2.5	6.5	ns	
T _{jitter}	Cycle – Cycle Jitter		50	ps	3, 4
V _{HIGH}	Voltage High including overshoot	660	1150	mV	2
$V_{ m LOW}$	Voltage Low including undershoot	-300		mV	2
V _{cross}	Absolute crossing point voltages	250	550	mV	2
DV _{cross}	Total Variation of Vcross over all edges		140	mV	2
T _{DC}	Duty Cycle	45	55	%	3
T _{jadd}	Additive RMS phase jitter for PCIe 2.0	<0	1	ps	5

Notes:


- 1. Test configuration is $R_s = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.
- 2. Measurement taken from Single Ended waveform.
- 3. Measurement taken from Differential waveform.
- 4. Measurement taken using M1 data capture analysis tool.
- 5. Additive jitter is calculated from input and output RMS phase jitter by using PCIe 2.0 filter. $(T_{jadd} = \sqrt{(output\ jitter)^2 (input\ jitter)^2}$

Configuration Test Load Board Termination



Packaging Mechanical: 28-Pin SSOP (H)

Packaging Mechanical: 28-Pin TSSOP (L)

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description
PI6C20400AHE	HE	28-pin, 209-mil wide, SSOP, Pb-Free and Green
PI6C20400ALE	LE	28-pin, 173-mil wide, TSSOP, Pb-Free and Green

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com