imall

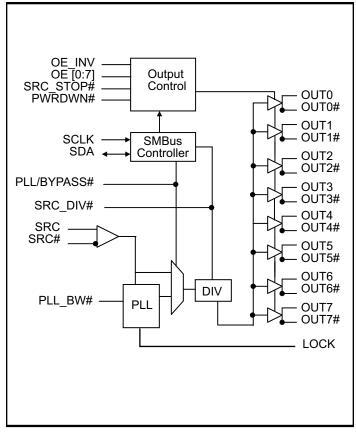
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


PI6C20800

1:8 Clock Driver for Intel PCI Express® Chipsets

Features

- · Eight Pairs of Differential Clocks
- Low skew < 50ps
- Low Cycle-to-cycle jitter < 50ps
- Output Enable for all outputs
- Outputs Tristate control via SMBus
- Power Management Control
- Programmable PLL Bandwidth
- PLL or Fanout operation
- 3.3V Operation
- 100-200 MHz PLL Mode Operation
- 100-400 MHz Bypass Mode Operation
- Packaging (Pb-Free & Green): — 48-Pin SSOP (V)
 - 48-Pin TSSOP (A)

Block Diagram

Description

PI6C20800 is a high-speed, low-noise differential clock buffer designed to be a companion to PI6C410B. The device distributes the differential SRC clock from PI6C410B to eight differential pairs of clock outputs either with or without PLL. The input SRC clock can be divided by 2 when SRC_DIV# is LOW. The clock outputs are controlled by input selection of SRC_STOP#, PWRDWN# and SMBus, SCLK and SDA. When input of either SRC_STOP# or PWRDWN# is LOW, the output clocks are Tristated. When PWRDWN# is LOW, the SDA and SCLK inputs must be Tristated.

Pin Configuration

SRC DIV#		48 🗖 V _{DD_A}
		47 VSS_A
V _{SS}		46 🛛 I _{REF}
SRC		
SRC#		44 D OE 7
OE 0		
OE_3		
OUT0		41 D OUT7#
OUT0#		
VSS		39 🗖 V _{DD}
V _{DD}		
OUT1		37 D OUT6#
OUT1#	L 13	36 OE 6
OE 1	L 14	35 0E 5
OE_2	1 5	
OUT2		33 OUT5#
OUT2#	L 17	32 🗖 V _{SS}
V _{SS}	L 18	31 🗗 V _{DD}
V _{DD}	L 19	30 OUT4
OUT3	C 20	29 占 OUT4#
OUT3#	C 21	28 D PLL_BW#
PLL/BYPASS#	C 22	27 SRC_STOP#
SCLK	C 23	26 PWRDWN#
SDA	C 24	25 🗖 V _{SS}
	L	

Pin Descriptions

Pin Name	Туре	Pin #	Descriptions
SRC_DIV#	Input	1	3.3V LVTTL input for selecting input frequency divide by 2, active LOW.
SRC & SRC#	Input	4, 5	0.7V Differential SRC input from PI6C410 clock synthesizer
OE [0:7]	Input	6, 7, 14, 15, 35, 36, 43, 44	3.3V LVTTL input for enabling outputs, active HIGH.
OE_INV	Input	40	3.3V LVTTL input for inverting the OE, SRC_STOP# and PWRDWN# pins. When 0 = same stage When 1 = OE[0:7], SRC_STOP#, PWRDWN# inverted.
OUT[0:7] & OUT[0:7]#	Output	8, 9, 12, 13, 16 17, 20, 21, 29, 30, 33, 34, 37, 38, 41, 42	0.7V Differential outputs
PLL/BYPASS#	Input	22	3.3V LVTTL input for selecting fan-out of PLL operation.
SCLK	Input	23	SMBus compatible SCLOCK input
SDA	I/O	24	SMBus compatible SDATA
I _{REF}	Input	46	External resistor connection to set the differential output current
SRC_STOP#	Input	27	3.3V LVTTL input for SRC stop, active LOW
PLL_BW#	Input	28	3.3V LVTTL input for selecting the PLL bandwidth
PWRDWN#	Input	26	3.3V LVTTL input for Power Down operation, active LOW
LOCK	Output	45	3.3V LVTTL output, transition high when PLL lock is achieved (Latched output)
V _{DD}	Power	2, 11, 19, 31, 39	3.3V Power Supply for Outputs
V _{SS}	Ground	3, 10, 18, 25, 32	Ground for Outputs
V _{SS_A}	Ground	47	Ground for PLL
V _{DD_A}	Power	48	3.3V Power Supply for PLL

Serial Data Interface (SMBus)

PI6C20800 is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

Address assignment

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	1	1	0	0/1

Data Protocol⁽¹⁾

1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit
Start bit	Slave Addr	R/W	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	Data Byte N - 1	Ack	Stop bit

Note:

1. Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

Data Byte 0: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Pin
0	SRC_DIV# 0 = Divide by 2 1 = Normal	RW	1 = x1	OUT[0:7], OUT[0:7]#	NA
1	PLL/BYPASS# 0 = Fanout 1 = PLL	RW	1 = PLL	OUT[0:7], OUT[0:7]#	NA
2	PLL Bandwidth 0 = HIGH Bandwidth, 1 = LOW Bandwidth	RW	1 = Low	OUT[0:7], OUT[0:7]#	NA
3	TBD				NA
4	TBD				NA
5	TBD				NA
6	SRC_STOP# 0 = Driven when stopped 1 = Tristate	RW	0 = Driven when stopped	OUT[0:7], OUT[0:7]#	
7	PWRDWN# 0 = Driven when stopped 1 = Tristate	RW	0 = Driven when stopped	OUT[0:7], OUT[0:7]#	NA

Data Byte 1: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Pin
0		RW	1 = Enabled	OUT0, OUT0#	NA
1		RW	1 = Enabled	OUT1, OUT1#	NA
2		RW	1 = Enabled	OUT2, OUT2#	NA
3	OUTPUTS enable 1 = Enabled	RW	1 = Enabled	OUT3, OUT3#	NA
4	0 = Disabled	RW	1 = Enabled	OUT4, OUT4#	NA
5		RW	1 = Enabled	OUT5, OUT5#	NA
6		RW	1 = Enabled	OUT6, OUT6#	NA
7		RW	1 = Enabled	OUT7, OUT7#	NA

Data Byte 2: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Pin
0		RW	0 = Free running	OUT0, OUT0#	NA
1		RW	0 = Free running	OUT1, OUT1#	NA
2	Allow control of OUTPUTS with	RW	0 = Free running	OUT2, OUT2#	NA
3	assertion of SRC_STOP#	RW	0 = Free running	OUT3, OUT3#	NA
4	0 = Free running	RW	0 = Free running	OUT4, OUT4#	NA
5	1 = Stopped with SRC_Stop#	RW	0 = Free running	OUT5, OUT5#	NA
6		RW	0 = Free running	OUT6, OUT6#	NA
7		RW	0 = Free running	OUT7, OUT7#	NA

Data Byte 3: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Pin
0		RW			
1		RW			
2		RW			
3	TDD	RW			
4	TBD	RW			
5		RW			
6		RW			
7		RW			

Data Byte 4: Pericom ID Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Pin
0		R	0	NA	NA
1		R	0	NA	NA
2		R	0	NA	NA
3	Dericer ID	R	0	NA	NA
4	Pericom ID	R	0	NA	NA
5		R	1	NA	NA
6		R	0	NA	NA
7		R	0	NA	NA

Functionality

PWRDWN#	OUT	OUT#	SRC_Stop#	OUT	OUT#
1	Normal	Normal	1	Normal	Normal
0	$I_{REF} \times 2$ or Float	LOW	0	$I_{REF} \times 6$ or Float	LOW

Power Down (PWRDWN# assertion)

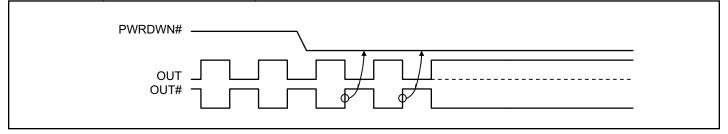
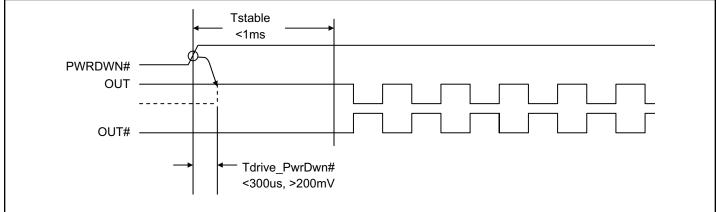



Figure 1. Power down sequence

Power Down (PWRDWN# De-assertion)

Figure 2. Power down de-assert sequence

Current-mode output buffer characteristics of OUT[0:7], OUT[0:7]#

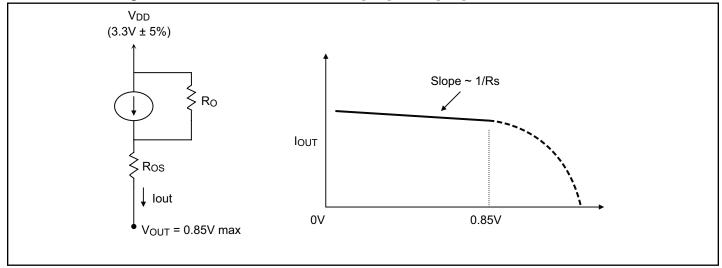


Figure 9. Simplified diagram of current-mode output buffer

Differential Clock Buffer characteristics

Symbol	Minimum	Maximum
R _O	3000Ω	N/A
R _{OS}	unspecified	unspecified
V _{OUT}	N/A	850mV

Current Accuracy

Symbol	Conditions	Configuration	Load	Min.	Max.
I _{OUT}	$V_{DD} = 3.30 \pm 5\%$	$R_{REF} = 475\Omega \ 1\%$ $I_{REF} = 2.32mA$	Nominal test load for given configuration	-12% I _{NOMINAL}	+12% I _{NOMINAL}

Note:

1. $I_{NOMINAL}$ refers to the expected current based on the configuration of the device.

Differential Clock Output Current

Board Target Trace/Term Z	Reference R, Iref = V _{DD} /(3xRr)	Output Current	V _{OH} @ Z
100Ω (100Ω differential ≈ 15% coupling ratio)	$R_{REF} = 475\Omega \ 1\%,$ $I_{REF} = 2.32mA$	$I_{OH} = 6 \text{ x } I_{REF}$	0.7V @ 50

Absolute Maximum Ratings⁽¹⁾ (Over operating free-air temperature range)

Symbol	Parameters	Min.	Max.	Units
V _{DD_A}	3.3V Core Supply Voltage	-0.5	4.6	
V _{DD}	3.3V I/O Supply Voltage	-0.5	4.6	V
V _{IH}	Input HIGH Voltage		4.6 V	
V _{IL}	Input LOW Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
V _{ESD}	ESD Protection	2000		V

Note:

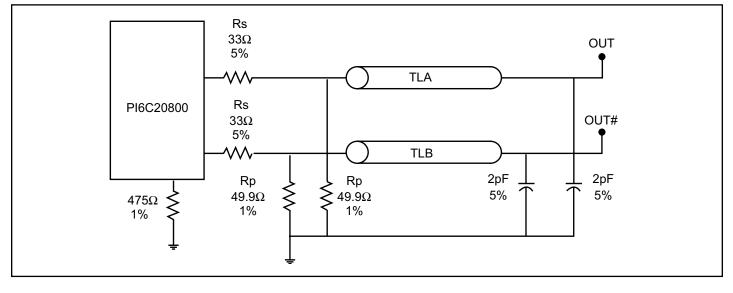
1. Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Symbol	Parameters	Condition	Min.	Max.	Units	
V _{DD_A}	3.3V Core Supply Voltage		3.135	3.465		
V _{DD}	3.3V I/O Supply Voltage		3.135	3.465	v	
V _{IH}	3.3V Input HIGH Voltage	V _{DD}	2.0	$V_{DD} + 0.3$] `	
V _{IL}	3.3V Input LOW Voltage		$V_{\rm SS}-0.3$	0.8		
I _{IK}	Input Leakage Current	$0 < V_{IN} < V_{DD}$	-5	+5	μΑ	
V _{OH}	3.3V Output HIGH Voltage	$I_{OH} = -1 mA$	2.4		17	
V _{OL}	3.3V Output LOW Voltage	$I_{OL} = 1mA$		0.4	V	
T	Output HIGH Current	$I_{OH} = 6 \times I_{REF},$ $I_{REF} = 2.32 \text{mA}$	12.2		mA	
I _{OH}				15.6		
C _{IN}	Logic Input Pin Capacitance		1.5	5	ъE	
C _{OUT}	Output Pin Capacitance			6	6 pF	
L _{PIN}	Pin Inductance			7	nH	
I _{DD}	Power Supply Current	$V_{DD} = 3.465 V, F_{CPU} = 200 MHz$		250		
I _{SS}	Power Down Current	Driven outputs		60	mA	
I _{SS}	Power Down Current	Tristate outputs		12		
T _A	Ambient Temperature		0	70	°C	

DC Electrical Characteristics (V_{DD} = 3.3±5%, V_{DD A} = 3.3±5%)

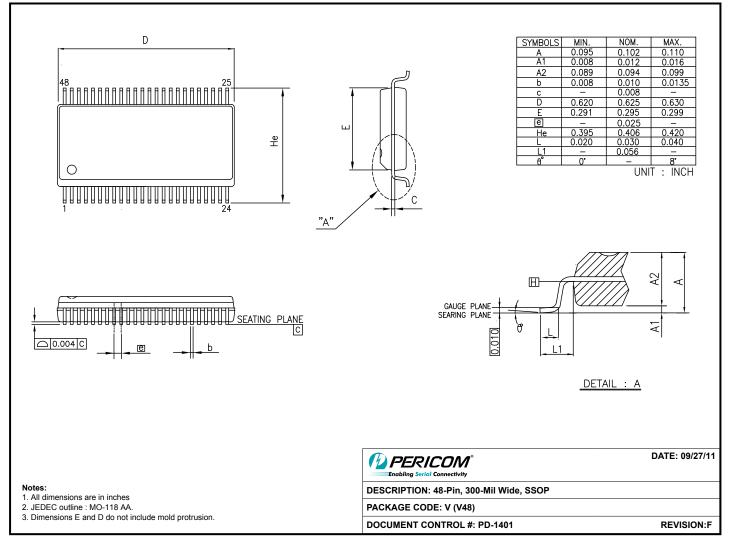
AC Switching Characteristics^(1,2,3) ($V_{DD} = 3.3\pm5\%$, $V_{DD A} = 3.3\pm5\%$)

Symbol	Parameters	Min	Max.	Units	Notes
F	PLL Mode	100	200	MHz	
F _{IN}	Bypass Mode	100	400	MHz	
T _{rise} / T _{fall}	Rise and Fall Time (measured between 0.175V to 0.525V)	175	700		2
$\Delta T_{rise} / \Delta T_{fall}$	Rise and Fall Time Variation		125	ps	2
T _{skew}	Output-to-Output Skew 50		50	ps	3
V _{HIGH}	Voltage HIGH	660	850		2
V _{OVS}	Max. Voltage		1150]	
V _{UDS}					
V _{LOW}	Voltage LOW	-150	+150	mV	2
V _{cross}	Absolute crossing poing voltages	250	550	550 2 140 2	
ΔV_{cross}	Total Variation of V _{cross} over all edges		140		
T _{DC}	Duty Cycle	45	55	%	3
T _{jcyc-cyc}	Jitter, Cycle-to-cycle (PLL Mode, Measurement for differential waveform)		50	ps	
····	Jitter, Cycle-to-cycle (BYPASS mode as additive jitter)			-	

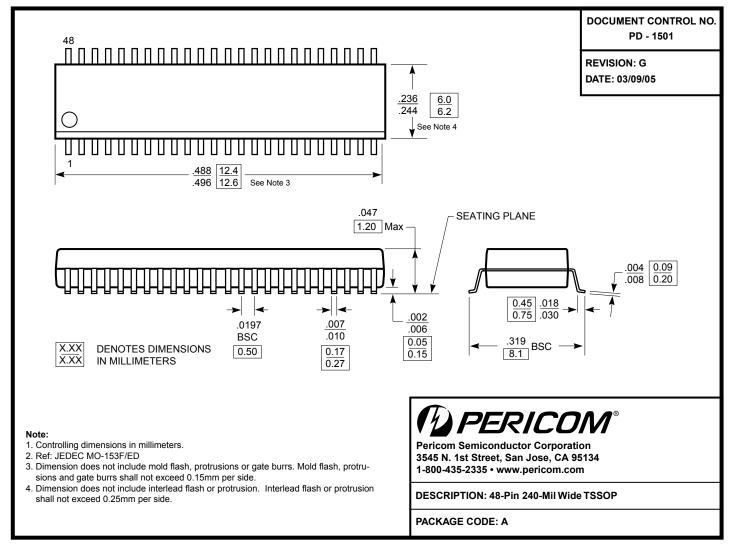

Notes:

1. Test configuration is $R_S = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.

2. Measurement taken from Single Ended waveform.


3. Measurement taken from Differential waveform.

Configuration Test Load Board Termination


Packaging Mechanical: 48-Pin SSOP (V)

11-0197

Packaging Mechanical: 48-Pin TSSOP (A)

Ordering Information^(1,2)

Ordering Code	Package Code	Package Description
PI6C20800VE	V	48-pin, 300-mil wide, SSOP, Pb-Free and Green
PI6C20800AE	А	48-pin, 240-mil wide, TSSOP, Pb-Free and Green

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

• E = Pb-free and Green

• Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com