

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

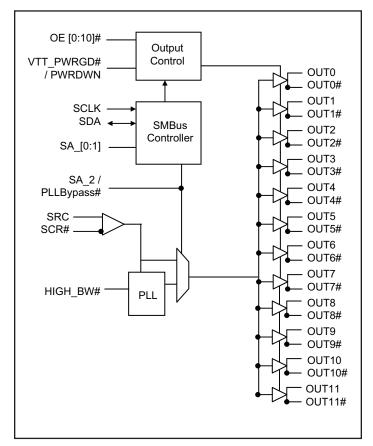
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

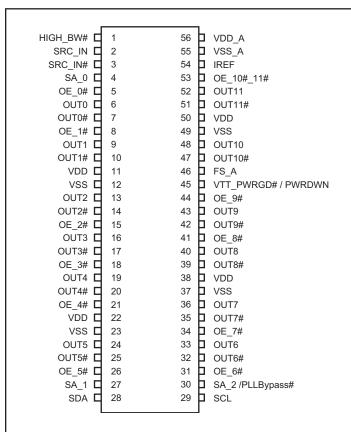
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1:12 Clock Driver for Intel PCIe® Chipsets


Features

- Twelve Pairs of PCIe® Differential Clocks (HCSL compatible signaling)
- Low skew < 50ps
- Low jitter < 50ps
- · Output Enable for all outputs
- · Outputs tristate control via SMBus
- · Power Management Control
- · Programmable PLL Bandwidth
- PLL or Fan out operation
- Gear Ratio supporting different output frequencies
- 3.3V Operation
- 56-pin Package (Pb-Free & Green):
 - TSSOP (A56)


Description

PI6C21200 is a high-speed, low-noise PCIe® differential clock buffer designed to be a companion with PI6C410B clock synthesizer. The device distributes twelve copies of the differential SRC clock coming from PI6C410B. The output frequency can be ratioed to offer a derivative frequency from the input frequency. Each differential output is controlled by individual OE pin, except OUT10 and OUT11 are sharing one OE_10#_11# pin. The clock outputs are controlled by input selection of SA 0, SA 1, SA 2 via SMBus, SCLK and SDA.

Block Diagram

Pinout Diagram

09-0003 ps8820B 10/14/09

Pin Descriptions

Pin Name	Type	Pin Number	Descriptions
PLL_BW#	Input	1	3.3V LVTTL input for selecting the PLL bandwidth. (High = Low BW)
SRC & SRC#	Input	2, 3	0.7V Differential SRC input from PI6C410B clock synthesizer
OUT[0:9] & OUT[0:9]#	Output	6, 7, 9, 10, 13, 14, 16, 17, 19, 20, 24, 25, 32, 33, 35, 36, 39, 40, 42, 43	0.7V Differential outputs, geared to the ratio of input clock. Can be configured to be 1:1 ratio.
OUT[10:11] & OUT[10:11]#	Output	47, 48, 51, 52	0.7V Differential outputs, geared to the ratio of input clock same as OUT[0:9]. Can be configured to be 1:1 ratio.
OE_[0:9]#	Input	5, 8, 15, 18, 21, 26, 31, 34, 41, 44	3.3V LVTTL input for enabling outputs, active low. Control each OUT[0:9] pair.
OE_10#_11#	Input	53	3.3V LVTTL input for enabling outputs, active low. Control each OUT[10:11] pair.
SA_[0:1]	Input	4, 27	3.3V LVTTL input for selecting the SMBus address
SA_2 / PLL- BYPASS#	Input	30	3.3V LVTTL input for selecting fan-out of PLL operation, and SMBus address. 0 = PLL Bypass, 1 = PLL mode
SCLK	Input	29	SMBus compatible SCLOCK input
SDA	I/O	28	SMBus compatible SDATA
I_{REF}	Input	54	External resistor connection to set the differential output current
FS_A	Input	46	3.3V LVTTL inputs for CPU frequency selection 0 = above 200 MHz, 1 = below 200 MHz
VTT_PWRGD# / PWRDWN	Input	45	3.3V LVTTL input for Power Down operation, active high
$V_{ m DD}$	Power	11, 22, 38, 50	3.3V Power Supply for Outputs
$V_{\rm SS}$	Ground	12, 23, 37, 49	Ground for Outputs
V _{SS_A}	Ground	55	Ground for PLL
V_{DD_A}	Power	56	3.3V Power Supply for PLL

Serial Data Interface (SMBus)

PI6C21200 is a slave only SMBus device that supports random byte read and write indexed block read and write protocol using a single 7-bit address and read/write bit as shown below.

SMBus Address Selection by SA_[0:2]

SA_2/ PLLBypass#	SA_1	SA_0	SMBus Address	PLL Mode
0	0	0	D0	Bypass
0	0	1	D2	Bypass
0	1	0	D4	Bypass
0	1	1	D6	Bypass
1	0	0	D8	PLL
1	0	1	DA	PLL
1	1	0	DC	PLL
1	1	1	DE	PLL

Indexed Block Read and Write Protocol

Block Write Protocol			Block Read Protocol		
Bit	Description	Bit	Description		
1	Start	1	Start		
2:8	Slave address - 7 bits	2:8	Slave address - 7 bits		
9	Write = 0	9	Write = 0		
10	Acknowledge from slave	10	Acknowledge from slave		
11:18	Command Code - 8 Bits '000000000' Stand for block operation	11:18	Command Code - 8 Bits '00000000' Stand for block operation		
19	Acknowledge from slave	19	Acknowledge from slave		
20:27	Byte Count from master - 8 bits	20	Repeat start		
28	Acknowledge from slave	21:27	Slave address - 7 bits		
29:36	Datat byte 0 from master - 8 bits	28	Read = 1		
37	Acknowledge from slave	29	Acknowledge from slave		
38:45	Datat byte 1 from master - 8 bits	30:37	Byte count from slave - 8 bits		
46	Acknowledge from slave	38	Acknowledge from host		
	Data bytes from master/Acknowledge	39:46	Data byte 0 from slave - 8 bits		
	Data byte N - 8 bits	47	Acknowledge from host		
	Acknowledge from slave	48:55	Data byte 1 from slave - 8 bits		
••••	Stop	56	Acknowledge from host		
			Data bytes from slave/Acknowledge		
			Data byte N from slave - 8 bits		
			Acknowledge from host - 38 bits		
			Stop		

Random Byte Read and Write Protocol

	Byte Write Protocol	Byte Read Protocol	
Bit	Description	Bit	Description
1	Start	1	Start
2:8	Slave address - 7 bits	2:8	Slave address - 7 bits
9	Write = 0	9	Write - 0
10	Acknowledge from slave	10	Acknowledge from slave
11:18	Command Code - 8 bits '100xxxxx' stands for byte operation, bits[6:0] of the command code represents the offset of the byte to be accessed.	11:18	Command Code - 8 bits '100xxxxx' stands for byte operation, bits[6:0] of the command code represents the offset of the byte to be accessed.
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Data byte from master - 8 bits	20:27	Repeat start
28	Acknowledge from slave	21:27	Slave address - 7 bits
29	Stop	28	Read = 1
		29	Acknowledge from slave
		30:37	Data byte from slave - 8 bits
		38	Acknowledge from master - 38 bits
		39	Stop

Data Byte 0: Control Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected
0	FSB Gear Ratio SMBus	RW	1	
1	FSB Gear Ratio SMBus	RW	Depends on FS_A pin ⁽¹⁾	
2	FSB Gear Ratio SMBus	RW	0	
3	FSB Gear Ratio SMBus	RW	Depends on FS_A pin ⁽¹⁾	
4	FS_A PI6C410B latched input	RW	Latch	
5	Reserved	RW	1	
6	Group of 2 gear ratio select 1 = 1:1, 0 = Gear Raito	RW	1	OUT[10:11], OUT[10:11]#
7	Group of 10 gear ratio select 1 = 1:1, 0 = Gear Raito	RW	1	OUT[0:9], OUT[0:9]#

Note:

Data Byte 1: Control Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected
0		RW	1 = Enabled	OUT0, OUT0#
1	1	RW	1 = Enabled	OUT1, OUT1#
2		RW	1 = Enabled	OUT2, OUT2#
3	OUTPUTS enable	RW	1 = Enabled	OUT3, OUT3#
4	1 = Enabled 0 = Hi-Z	RW	1 = Enabled	OUT4, OUT4#
5		RW	1 = Enabled	OUT5, OUT5#
6		RW	1 = Enabled	OUT6, OUT6#
7		RW	1 = Enabled	OUT7, OUT7#

Data Byte 2: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected
0		RW	1 = Enabled	OUT8, OUT8#
1	OUTPUTS enable	RW	1 = Enabled	OUT9, OUT9#
2	1 = Enabled 0 = Hi-Z	RW	1 = Enabled	OUT10, OUT10#
3		RW	1 = Enabled	OUT11, OUT11#
4	Reserved	RW		
5	PLL/BYPASS# 0 = Fanout,1 = PLL	RW	1 = PLL	OUT[0:11], OUT[0:11]#
6	PLL Bandwidth 0 = High Bandwidth, 1 = Low Bandwidth	RW	1 = Low	OUT[0:11], OUT[0:11]#
7	Outputs current select at PWRDWN = 1 $1 = 2 \times I_{REF}$, $0 = HiZ$	RW	1	

^{1.} When $FS_A = 1$, Bit 1 = 0 and Bit 3 = 1; When $FS_A = 0$, Bit 1 = 1 and Bit 3 = 0

Data Byte 3: Control Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected
0	OE_0#, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin	OUT0, OUT0#
1	OE_1#, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin	OUT1, OUT1#
2	OE_2#, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin	OUT2, OUT2#
3	OE_3#, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin	OUT3, OUT3#
4	OE_4#, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin	OUT4, OUT4#
5	OE_5#, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin	OUT5, OUT5#
6	OE_6#, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin	OUT6, OUT6#
7	OE_7#, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin	OUT7, OUT7#

Data Byte 4: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected
0	$OE_8\#$, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin at power up	OUT8, OUT8#
1	$OE_9\#$, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin at power up	OUT9, OUT9#
2	OE_10#_11#, 1 = Disable (Hi-Z), 0 = Enable	R	Depends on state of pin at power up	OUT[10:11], OUT[10:11]#
3	Reserved	R		
4	Reserved	R		
5	Readback – PLLBypass input	R	Latch value of pin at power up	
6	Readback – HIGH_BW# input	R	Latch value of pin at power up	
7	Readback – FS_A input	R	Latch value of pin at power up	

Data Byte 5: Pericom ID Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected
0		R	0	NA
1	Pericom ID	R	0	NA
2		R	0	NA
3		R	0	NA
4		R	0	NA
5	Revision Code	R	0	NA
6		R	0	NA
7		R	0	NA

Data Byte 6: Device ID Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected
0	Device ID 0	R	0	NA
1	Device ID 1	R	0	NA
2	Device ID 2	R	1	NA
3	Device ID 3	R	1	NA
4	Device ID 4	R	0	NA
5	Device ID 5	R	0	NA
6	Device ID 6	R	0	NA
7	Device ID 7	R	0	NA

Data Byte 7: Byte Counter Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected
0	BC0 - Writing to the register configures how many bytes will be read back	RW	1	NA
1	BC1 - Writing to the register configures how many bytes will be read back	RW	1	NA
2	BC2 - Writing to the register configures how many bytes will be read back	RW	1	NA
3	BC3 - Writing to the register configures how many bytes will be read back	RW	0	NA
4	BC4 - Writing to the register configures how many bytes will be read back	RW	0	NA
5	BC5 - Writing to the register configures how many bytes will be read back	RW	0	NA
6	BC6 - Writing to the register configures how many bytes will be read back	RW	0	NA
7	BC7 - Writing to the register configures how many bytes will be read back	RW	0	NA

Programmable Gear Ratio – Output Frequency

FS_A		SMBus	Byte 0		Input	Output	Gear Ratio	CPU Input Frequency (MHz))	
	Bit 3	Bit 2	Bit 1	Bit 0	M	N	(N/M)	200	266.7	320	333.3	400
0	0	0	0	0	3	1	0.333	NA	NA	106.7	111.1	133.3
0	0	0	0	1	5	2	0.400	NA	106.7	128.0	133.3	160.0
0	0	0	1	0	12	5	0.417	NA	111.1	133.3	138.9	166.7
0	0	0	1	1	2	1	0.500	100.0	133.3	160.0	166.7	200.0
0	0	1	0	0	5	3	0.600	120.0	160.0	192.0	200.0	240.0
0	0	1	0	1	8	5	0.625	125.0	166.7	200.0	208.3	NA
0	0	1	1	0	3	2	0.667	133.3	177.8	213.3	222.2	266.7
0	0	1	1	1	4	3	0.750	150.0	200.0	240.0	NA	NA
0	1	0	0	0	6	5	0.833	166.7	222.2	NA	NA	NA
0	1	0	0	1	1	1	1.000	200.0	266.7	320.0	333.3	400.0
0	1	0	1	0	5	6	1.200	240.0	320.0	384.0	400.0	480.0
0	1	0	1	1	4	5	1.250	250.0	333.3	400.0	416.6	500.0
0	1	1	0	0	3	4	1.333	266.7	NA	NA	NA	NA
0	1	1	0	1	2	3	1.500	300.0	400.0	480.0	NA	NA
0	1	1	1	0	3	5	1.667	333.3	444.4	NA	NA	NA
0	1	1	1	1	1	2	2.000	400.0	NA	NA	NA	NA

Note:

^{1.} Line in BOLD is power-up default for FS_A = 0 for Pericom Semiconductor's PI6C410B.

Programmable Gear Ratio - Output Frequency -- Continued

FS_A		SMBus	s Byte 0		Input	Output	Gear Ratio	CPU Input Frequency (MHz))	
	Bit 3	Bit 2	Bit 1	Bit 0	M	N	(N/M)	100	133.3	160	166.67	200
1	0	0	0	0	3	1	0.333	NA	NA	53.3	55.6	66.7
1	0	0	0	1	5	2	0.400	NA	53.3	64.0	66.7	80.0
1	0	0	1	0	12	5	0.417	NA	55.6	66.7	69.4	83.3
1	0	0	1	1	2	1	0.500	50.0	66.7	80.0	83.3	100.0
1	0	1	0	0	5	3	0.600	60.0	80.0	96.0	100.0	120.0
1	0	1	0	1	8	5	0.625	62.5	83.3	100.0	104.2	NA
1	0	1	1	0	3	2	0.667	66.7	88.9	106.7	111.1	133.3
1	0	1	1	1	5	4	0.800	80.0	106.7	128.0	133.3	160.0
1	1	0	0	0	6	5	0.833	NA	111.1	133.3	138.9	166.7
1	1	0	0	1	1	1	1.000	100.0	133.3	160.0	166.7	200.0
1	1	0	1	0	5	6	1.200	120.0	160.0	192.0	200.0	240.0
1	1	0	1	1	4	5	1.250	125.0	166.7	200.0	208.3	NA
1	1	1	0	0	3	4	1.333	133.3	177.8	213.3	222.2	266.7
1	1	1	0	1	2	3	1.500	150.0	200.2	240.0	250.0	300.0
1	1	1	1	0	3	5	1.667	166.7	222.2	266.7	277.8	333.3
1	1	1	1	1	1	2	2.000	200.0	266.7	320.0	333.3	400.0

Note:

Functionality

VTT_PWRGD# /PWRDWN	OUT	OUT#
0	Normal	Normal
1	2 x I _{REF} or Float	Low

OE# pin	OE (SMBus bit)	OUT	OUT#
0	1	Normal	Normal
0	0	Hi-Z	Hi-Z
1	1	Hi-Z	Hi-Z
1	0	Hi-Z	Hi-Z

^{1.} Line in BOLD is power-up default for FS_A = 0 for Pericom Semiconductor's PI6C410B.

Power Down (PWRDWN assertion)

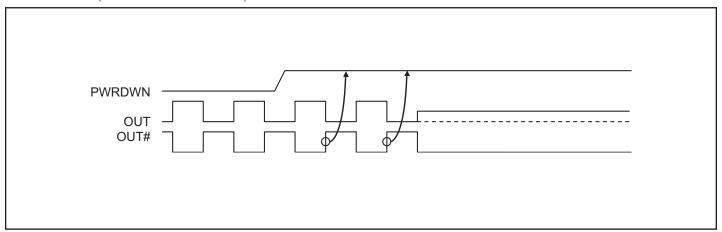


Figure 1. Power down sequence

Power Down (PWRDWN De-assertion)

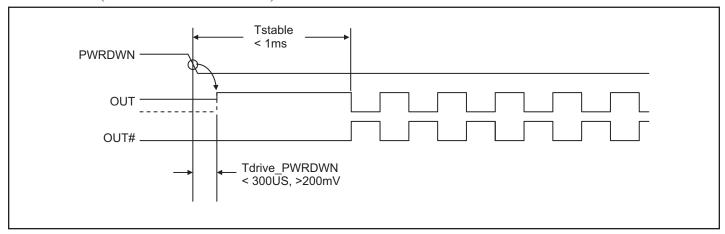


Figure 2. Power down de-assert sequence

Current-mode output buffer characteristics of OUT[0:11], OUT[0:11]#

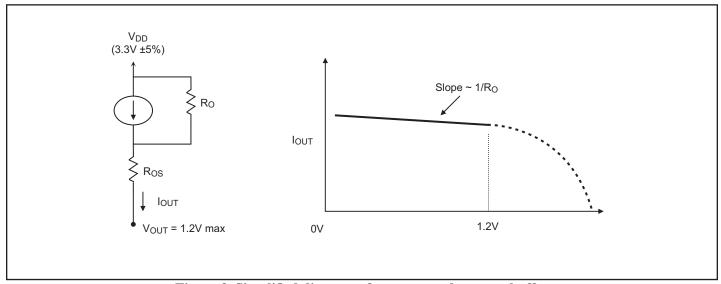


Figure 3. Simplified diagram of current-mode output buffer

Differential Clock Buffer Characteristics

Symbol	Minimum	Maximum		
R_{O}	3000Ω	N/A		
R _{OS}	unspecified	unspecified		
$V_{ m OUT}$	N/A	850mV		

Current Accuracy

Symbol	Conditions	Configuration	Load	Min.	Max.
I _{OUT}	$V_{\rm DD} = 3.30 \pm 5\%$	$R_{REF} = 475\Omega \ 1\%$ $I_{REF} = 2.32 \text{mA}$	Nominal test load for given configuration	-12% I _{NOMINAL}	+12% I _{NOMINAL}

Note:

 $1. \quad I_{NOMINAL} \ refers \ to \ the \ expected \ current \ based \ on \ the \ configuration \ of \ the \ device.$

Differential Clock Output Current

Board Target Trace/Term Z	Reference R, Iref = $V_{DD}/(3xRr)$	Output Current	V _{OH} @ Z
100Ω differential	R_{REF} = 475 Ω 1%, I_{REF} = 2.32mA	$I_{OH} = 6 \text{ x Iref}$	0.7V @ 50

09-0003 11 PS8821B 10/14/09

Absolute Maximum Ratings (Over operating free-air temperature range)

Symbol	Parameters	Min.	Max.	Units
$V_{\mathrm{DD_A}}$	3.3V Core Supply Voltage	-0.5	4.6	
V_{DD}	3.3V I/O Supply Voltage	-0.5	4.6	17
V_{IH}	Input High Voltage		4.6	V
V_{IL}	Input Low Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
V _{ESD}	ESD Protection	2000		V

Note:

DC Electrical Characteristics ($V_{DD} = 3.3 \pm 5\%$, $V_{DD A} = 3.3 \pm 5\%$)

Symbol	Parameters	Condition	Min.	Max.	Units	
V _{DD_A}	3.3V Core Supply Voltage		3.135	3.465		
V _{DD}	3.3V I/O Supply Voltage		3.135	3.465	$\Big]_{V}$	
V _{IH}	3.3V Input High Voltage	V_{DD}	2.0	$V_{\rm DD} + 0.3$] `	
V _{IL}	3.3V Input Low Voltage		$V_{SS}-0.3$	0.8		
I _{IK}	Input Leakage Current	$0 < V_{IN} < V_{DD}$	-5	+5	μΑ	
V _{OH}	3.3V Output High Voltage	$I_{OH} = -1 \text{mA}$	2.4		V	
V _{OL}	3.3V Output Low Voltage	$I_{OL} = 1 \text{mA}$		0.4	7	
т	Output High Current	$I_{OH} = 6 \times I_{REF}$	12.2		A	
I _{OH}	Output High Current	$I_{REF} = 2.32 \text{mA}$		15.6	mA	
C _{IN}	Input Pin Capacitance		3	5	E	
C _{OUT}	Output Pin Capacitance			6	pF	
L _{PIN}	Pin Inductance			7	nН	
I _{DD}	Power Supply Current	$V_{DD} = 3.465V, F_{CPU} = 400 \text{ MHz}$		375		
I _{SS}	Power Down Current	Driven outputs		90	mA	
I _{SS}	Power Down Current	Tristate outputs		24	<u> </u>	
T _A	Ambient Temperature		0	70	°C	

^{1.} Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

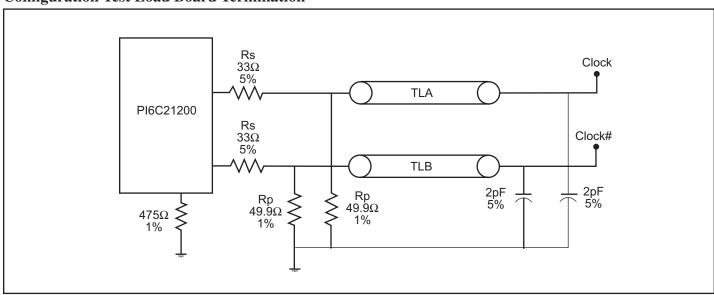
AC Switching Characteristics ($V_{DD} = 3.3 \pm 5\%$, $V_{DD_A} = 3.3 \pm 5\%$)

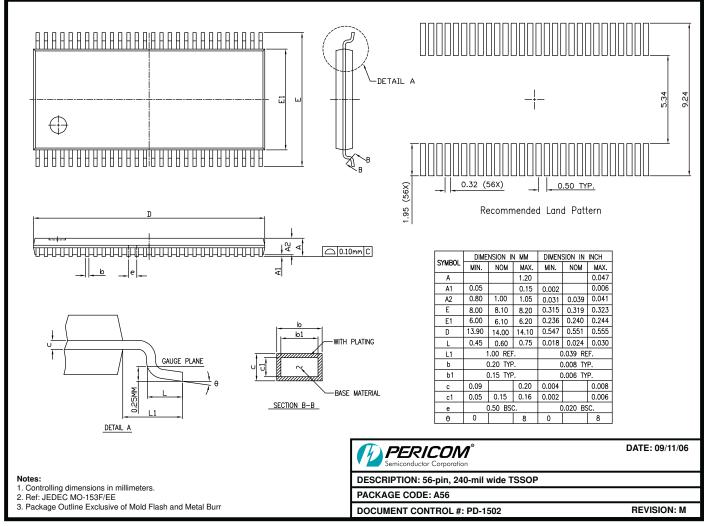
Symbol	Parameters	Min	Max.	Units	Notes
T _{rise} / T _{fall}	Rise and Fall Time (measured between 0.175V to 0.525V)	125	525		3
ΔT_{rise} / ΔT_{fall}	Rise and Fall Time Variation		75	ps	3
	Rise/Fall Matching		10	%	3
т.	PLL Mode		±250	ps	
T_{pd}	Non-PLL Mode	3		ns	
T _{skew}	Output-to-Output Skew OUT [9:0] or OUT [10:11]		50		4
T _{skew}	Output-to-Output Skew OUT [9:0] to OUT [10:11]		75	ps	4
T _{jitter}	Cycle-to-Cycle Jitter		50		4
V _{HIGH}	Voltage High including overshoot	660	850		3
$V_{ m LOW}$	Voltage Low including undershoot	-150			3
V _{CROSS}	Absolute crossing poing voltages	250	550	mV	3
ΔV_{CROSS}	Total Variation of Vcross over all edges		100		3
T _{DC}	Duty Cycle	45	55	%	4

Notes:

- 3. Measurement taken from Single Ended waveform.
- 4. Measurement taken from Differential waveform.
- 5. Test configuration is $R_S = 33.2\Omega$, $R_p = 49.9\Omega$, and 2pF.

Configuration Test Load Board Termination




Figure 4. Configuration test load board termination

Note:

1. TLA and TLB are 3" transmission lines.

Packaging Mechanical: 56-Pin, 240-mil wide TSSOP (A)

06-0736

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information:

	Ordering Code	Packaging Code	Package Type
ĺ	PI6C21200AE	A	56-Pin, 240-mil wide, 0.5mm pitch TSSOP, Pb-Free and Green

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com