

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

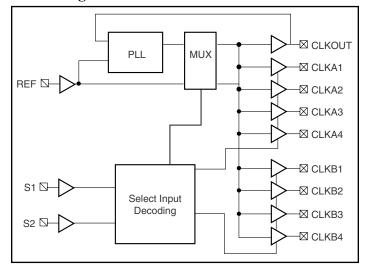
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2.5/3.3V 220MHz High-Speed, Low-Jitter, Low-Skew, Zero-Delay Clock Buffer with 9 Outputs

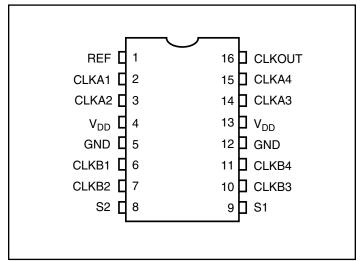
Features

- Phase-Lock Loop Clock Distribution (Zero Input-to-Output Delay)
- Internal feedback connection
- Distributes one-to-two banks of four outputs w/ one CLKOUT (9 outputs total)
- High-Performance
 - 30 MHz to 220 MHz operation frequency range
 - <100ps output-to-output skew
 - <100ps cycle-to-cycle jitter
 - Low Power Configuration 26mA (outputs unloaded)
- Spread-spectrum capable
- Power supply: $+2.5V \pm 5\%$; $+3.3V \pm 10\%$
- Industrial temperature range parts available
- Packaging (Pb-free & Green):
- 16-pin TSSOP (L)
- 16-pin SOIC (W)

Description


The PI6C22409-1H is a low-jitter, low-skew, high-speed Zero-Delay Buffer with 9 outputs designed to address high-speed clock distribution applications.

The PI6C22409-1H features an internal patented Phase Lock Loop (PLL) with high drive output capability and internal feedback.


The PI6C22409-1H operates from a 2.5V $\pm 5\%$ or 3.3V $\pm 10\%$ supply. All support documentation can be found on Pericom's web site at: www.pericom.com.

Pericom can customize these devices for specific requirements.

Block Diagram

Pin Configuration

Pin Description

Pin	Signal	Description
1	REF	Reference clock input with weak pull down.
2,3,6,7, 10,11,14,15	CLKA1, CLKA2, CLKB1, CLKB2, CLKB3, CLKB4, CLKA3, CLKA4, CLKOUT	Clock output. Clock outputs with weak pull-down.
16	CLKOUT	Clock output. Internal feedback on this pin.
5,12	GND	Ground
4,13	V_{DD}	Power
8,9	S2, S1	Select input with weak pull-ups.

Select Input Decoding

S2	S1	Clock A1 - A4	Clock B1 - B4	CLKOUT	Output Source	PLL shutdown
0	0	Tri-State	Tri-State	Driven	PLL	N
0	1	Driven	Tri-State	Driven	PLL	N
1	0	Driven	Driven	Driven	Reference	Y
1	1	Driven	Driven	Driven	PLL	N

$Maximum\ Ratings^{(1)}$

Supply Voltage
V _{DD} 0.5V to +4.6V
REF0.5V to +4.6V
Input Current50mA
Output Current±50mA
Lead Temperature (cap soldering, 10 sec.)+260°C
Storage Temperature (Ts)65°C to +150°C
Junction Temperature+150°C
Operating Temperature (cap industrial)40°C to +85°C
Operating Temperature (cap commercial)0°C to +70°C

Operation Ratings⁽²⁾

Supply voltage
V _{DD} +3.0V to +3.6V
V _{DD} +2.375V to +2.625V
Ambient Temperature (T _A)0°C to +70°C
Package Thermal Resistance ⁽²⁾
θЈА
Still-Air (SOIC-16)89°C/W
Still-Air (SOIC-16)90°C/W
θЈВ
Junction-to-Board (SOIC-16)26°C
Junction-to-Board (TSSOP-16)24°C

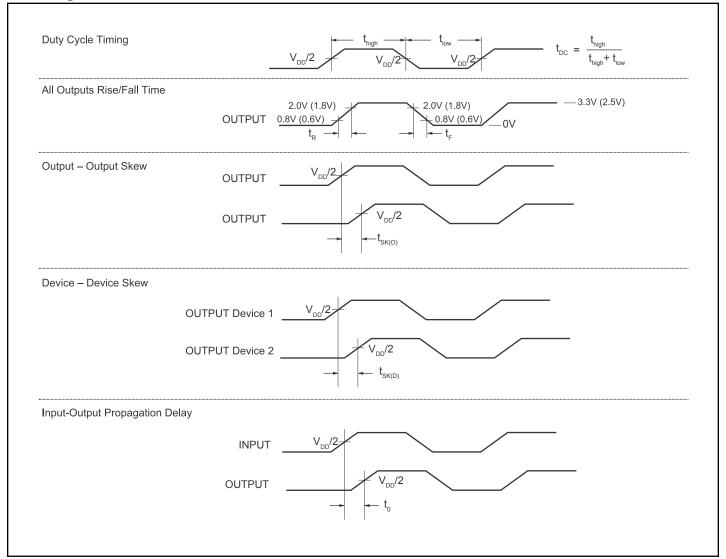
Notes:

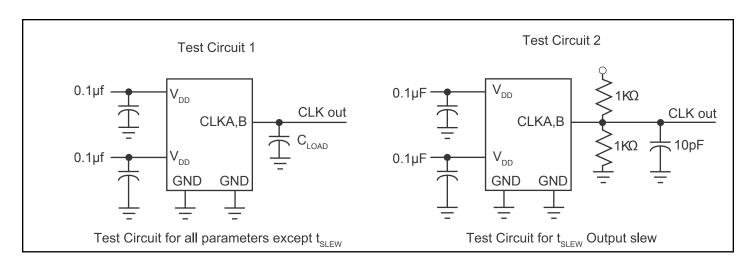
- 1. Stresses greater then those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the this specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. θJA and θJB values are determined for a 4-layer board in still-air, unless otherwise stated.

DC Electrical Characteristics

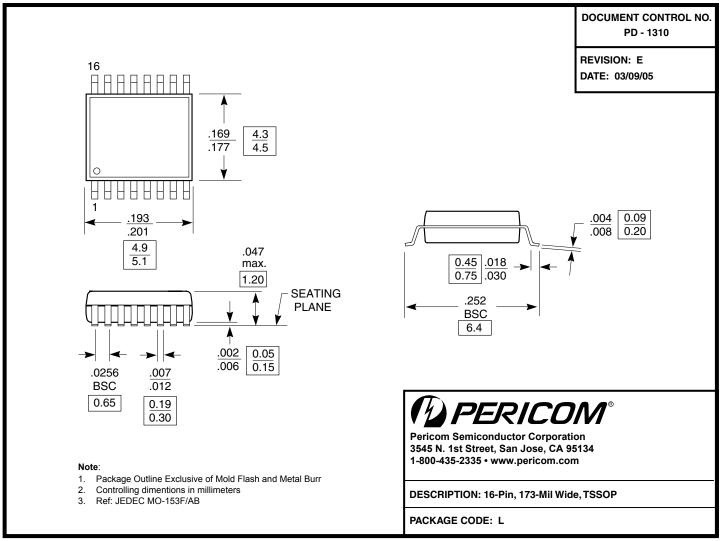
Parameter	Description	Test Conditions			Max.	Units
V Lagrat I OW Voltage		$V_{DD} = 3.3V$			0.8	
$ m V_{IL}$	Input LOW Voltage	$V_{DD} = 2.5V$			0.7	V
1 7	$V_{DD} = 3.3V$			2.0		
$V_{ m IH}$	Input HIGH Voltage	$V_{DD} = 2.5V$		1.7		
$I_{ m IL}$	Input LOW Current	$V_{IN} = 0V$			50	4
I_{IH}	Input HIGH Current	$V_{IN} = V_{DD}$			125	μA
V	Output LOW Voltage	I — 12 A	$V_{DD} = 3.3V$		0.25	
V_{OL}		$I_{OL} = 12mA$	$V_{DD} = 2.5V$		0.35	V
V _{OH}	Output HIGH Voltage	$V_{DD} = 2.5V, I_{OH} = -12mA$		1.9		
		$V_{DD} = 3.3V, I_{OH} = -12mA$		2.55		
I_{DD}	Supply Current	Unloaded outputs 66 MHz			32	mA

AC Electrical Characteristics

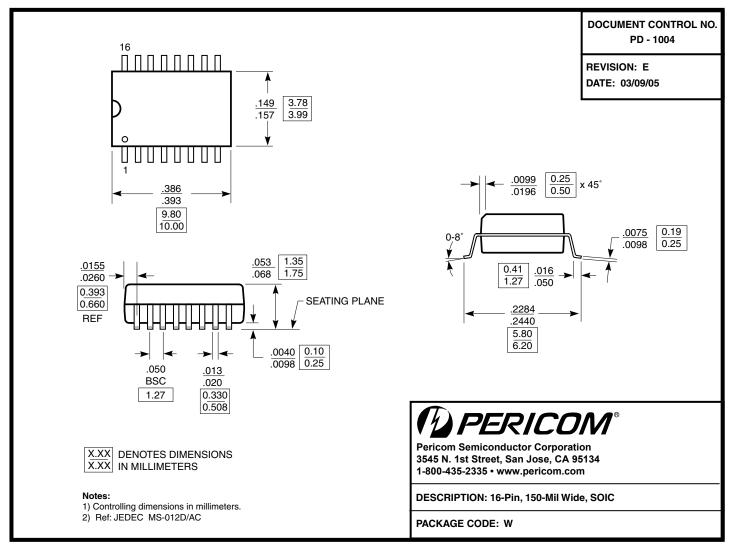

Parameter	Description	Test Conditions			Тур.	Max.	Units
E.	Output Frequency	$V_{\rm DD} = 2.5 \mathrm{V}$		10		200	MHz
F _O		$V_{DD} = 3.3V$		10		220	MHz
BW	Bandwidth for PLL	$V_{DD} = 2.5V$			0.8		MHz
DW		$V_{DD} = 3.3V$			1.5		
t _{DC}	Duty Cycle ⁽⁴⁾	Measured at V _{DD} /2, 10 pF load	d	45	50	55	%
t	Rise Time ⁽¹⁾⁽⁴⁾	For 3.3V: Measured between 0	0.8V and 2.0V; @10pF			1	
$t_{ m R}$		For 2.5V: Measured between 0	0.6V and 1.8V; @10pF			1.8	ng
t	Fall Time ⁽¹⁾⁽⁴⁾	For 3.3V: Measured between 0	0.8V and 2.0V; @10pF			1	ns
$t_{ m F}$		For 2.5V: Measured between 0	0.6V and 1.8V; @10pF			1.8	
	Output to Output skew ⁽¹⁾	All Outputs Equally Loaded	$V_{DD} = 3.3V$			100	
$t_{sk(o)}$		All Outputs Equally Loaded	$V_{\rm DD} = 2.5 V$			100	i i
	Delay, REF Rising Edge to	M 1 - W /0 (OFF	$V_{DD} = 3.3V$	-100		100	na
t_0	CLKOUT Rising Edge ⁽¹⁾ (2)(5)	Measured at V _{DD} /2, 66MHz	$V_{\rm DD} = 2.5 V$	-200	0	200	- ps
t _{SK(D)}	Device-to-device skew ⁽¹⁾	Measured at V _{DD} /2 on CLKx pins of device		-300	0	+300	
	Cycle-to-Cycle Jitter	15pF load, >66MHz, standard drive	$V_{DD} = 3.3V$		47	110	ps
			$V_{\rm DD} = 2.5 \mathrm{V}$		42	90	
		15pF load, >66MHz, high drive	$V_{DD} = 3.3V$		45	100	
t			$V_{\rm DD} = 2.5 V$		40	80	
$t_{ m JIT}$		30pF load, >66MHz, standard drive	$V_{DD} = 3.3V$		63	120	
			$V_{\rm DD} = 2.5 V$		83	130	
		30pF load, >66MHz, high drive	$V_{DD} = 3.3V$		51	115	
			$V_{\rm DD} = 2.5 V$		66	115	
tрJ	Period Jitter (Peak)	15pF load, >66MHz, standard drive	$V_{DD} = 3.3V$		39	90	ps
			$V_{\rm DD} = 2.5 V$		28	60	
		15pF load, >66MHz, high drive	$V_{DD} = 3.3V$		39	85	
			$V_{\rm DD} = 2.5 V$		27	55	
		30pF load, >66MHz, standard drive 30pF load, >66MHz,	$V_{DD} = 3.3V$		48	85	
			$V_{\rm DD} = 2.5 V$		75	90	
			$V_{DD} = 3.3V$		43	75	
		high drive	$V_{DD} = 2.5V$		60	80	
t _{LOCK}	PLL Lock time ⁽¹⁾	Stable power supply, valid clocks presented on CLKOUT pin				1	ms


Note:

- 1. See Switching Waveforms
- 2. All clock output should have the same loading to achieve zero delay between the input and outputs and zero output-to-output skew. Since the CLKOUT pin is the internal feedback to the PLL, its relative loading can adjust to input-to-output delay. If input-to-output delay adjustments are needed, the CLKOUT load may be changed to vary the delay between the REF input to the clock outputs. Output-to-output skew includes CLKA1-4 and CLKB1-4.
- 3. Specifications are guaranteed by design and not production tested.
- 4. Measured at 100MHz.
- 5. Measured with 16-Pin SOIC package


Switching Waveforms

Packaging Mechanical: 16-Pin TSSOP (L)


Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

10-0144 6 PS9030B 03/26/10

Packaging Mechanical: 16-Pin SOIC (W)

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information^(1,2,3)

Ordering Code	Package Code	Package Type
PI6C22409-1HLE	L	Pb-free & Green, 16-pin TSSOP
PI6C22409-1HLIE	L	Pb-free & Green, 16-pin TSSOP, Industrial temp range
PI6C22409-1HWE	W	Pb-free & Green, 16-pin SOIC
PI6C22409-1HWIE	W	Pb-free & Green, 16-pin SOIC, Industrial temp range

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com