

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

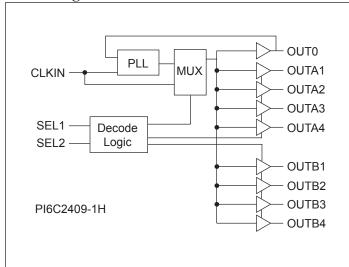
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

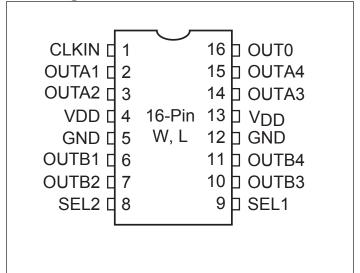
Zero-Delay Clock Buffer

Features

- Maximum rated frequency: 133 MHz
- Low cycle-to-cycle jitter
- Input to output delay, less than 200ps
- Internal feedback allows outputs to be synchronized to the clock input
- Spread spectrum compatible
- Operates at 3.3V V_{DD}
- Space-saving Package: (Pb-free & Green available)
 - 16-Pin TSSOP (L)
 - 16-Pin SOIC (W)


Description

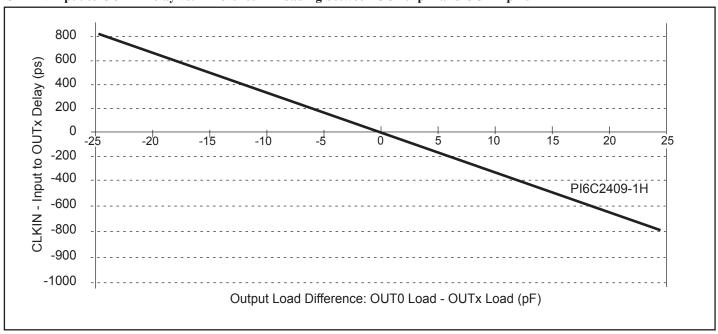
The PI6C2409-1H is a PLL based, zero-delay buffer, with the ability to distribute nine outputs of up to 133 MHz at 3.3V. All the outputs are distributed from a single clock input CLKIN and output OUT0 performs zero delay by connecting a feedback to PLL.


PI6C2409-1H has two banks of four outputs that can be controlled by the selection inputs, SEL1 & SEL2. It also has a power sparing feature: when input SEL1 is 0 and SEL2 is 1, PLL is turned off and all outputs are referenced from CLKIN. PI6C2409-1H is available in high drive and industrial environment versions.

An internal feedback on OUT0 is used to synchronize the outputs to the input; the relationship between loading of this signal and the outputs determines the input-output delay. PI6C2409-1H are characterized for both commercial and industrial operation

Block Diagram

Pin Configuration


Input Select Decoding

SEL2	SEL1	OUTA [1-4]	OUTB [1-4]	Output Source (OUT0)	PLL
0	0	3-State	3-State	PLL	ON
0	1	PLL	3-State	PLL	ON
1	0	CLKIN	CLKIN	CLKIN	OFF
1	1	PLL	PLL	PLL	ON

Pin Description

Pin	Signal	Description
1	CLKIN	Input clock reference frequency (weak pull-down)
2, 3, 14, 15	OUTA[1-4]	Clock outputs, Bank A
4, 13	VDD	3.3V supply
5, 12	GND	Ground
6, 7, 10 ,11	OUTB[1-4]	Clock outputs, Bank B
8	SEL2	Select input, bit 2 (weak pull-up)
9	SEL1	Select input, bit 1 (weak pull-up)
16	OUT0	Clock Output, internal PLL feedback

Zero-Delay and Skew Control CLKIN Input to OUTx Delay vs. Difference in Loading between OUT0 pin and OUTx pins

The relationship between loading of the OUT0 signal and other outputs determines the input-output delay. Zero delay is achieved when all outputs, including feedback, are loaded equally.

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	-65°C to +150°C
Supply Voltage to Ground Potential	-0.5V to +4.6V
DC Input Voltage	-0.5V to V _{DD} +0.5V
ESD Protection (Input)	2000 V min (HBM)

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Conditions ($V_{CC} = 3.3V \pm 0.3V$)

Parameter	Description	Min.	Max.	Units	
$V_{ m DD}$	Supply Voltage	3.0	3.6	V	
Т.	Commercial Operating Temperature	0	70	°C	
T_{A}	Industrial Operating Temperature	-40	85	- C	
C-	Load Capacitance, below 100 MHz		30		
C_{L}	Load Capacitance, from 100 MHz to 133 MHz	-	15	pF	
C _{IN}	Input Capacitance	-	7		

DC Electrical Characteristics for Industrial Temperature Devices

Parameters	Description	Test Conditions	Min.	Max.	Units
$V_{ m IL}$	Input LOW Voltage			0.8	V
$V_{ m IH}$	Input HIGH Voltage		2.0		V
${ m I}_{ m IL}$	Input LOW Current	$V_{IN} = 0V$		50.0	^
I_{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		125	μΑ
V _{OL}	Output LOW Voltage	$I_{OL} = 12mA$		0.4	V
V _{OH}	Output HIGH Voltage	$I_{OH} = -12mA$	2.4		V
	Bypass, PLL OFF	SEL1 = 0, $SEL2 = 1$		1.0	
I_{DD}	Supply Current	Unloaded outputs 100 MHz, Select inputs at V_{DD} or GND	62		mA
		Unloaded outputs 66 MHz, CLKIN		44	

AC Electrical Characteristics for Industrial Temperature Devices

Parameters	Name	Test Conditions	Min.	Typ.	Max.	Units
Г	Output Engage	30pF load	10.0	100	MII	
F_{O}	Output Frequency	10pF load	10.0		133	MHz
4	Duty Cycle ⁽¹⁾	Measured at $V_{DD}/2$, $F_{OUT} = 66.67 \text{ MHz}$	40.0	50	60.0	%
t_{DC}	Duty Cycle ⁽¹⁾	Measured at V _{DD} /2V, F _{OUT} <50MHz	45.0	50	55.0	70
t_{R}	Rise Time ⁽¹⁾	Measured between 0.8V and 2.0V			1.5	
t_{F}	Fall Time ⁽¹⁾	Measured between 0.8V and 2.0V			1.5	ns
t _{SK(O)}	Output to Output Skew ⁽¹⁾	All outputs equally loaded			250	
t_0	Delay, CLKIN Rising Edge to OUT0 Rising Edge ⁽¹⁾	Measured at V _{DD} /2		0	±350	ps
t _{SK(D)}	Device-to-Device Skew ⁽¹⁾	Measured at V _{DD} /2 on OUT0 pins of devices		0	700	
t _{SLEW}	Output Slew Rate ⁽¹⁾	Measured between 0.8V & 2.0V on –1H device using Test Crt #2	1			V/ns
t _{JIT}	Cycle-to-Cycle Jitter ⁽¹⁾	Measured at 66.67 MHz, loaded 30pF load			250	ps
t _{LOCK}	PLL Lock Time ⁽¹⁾	Stable power supply, valid clocks presented on CLKIN pin			1.0	ms

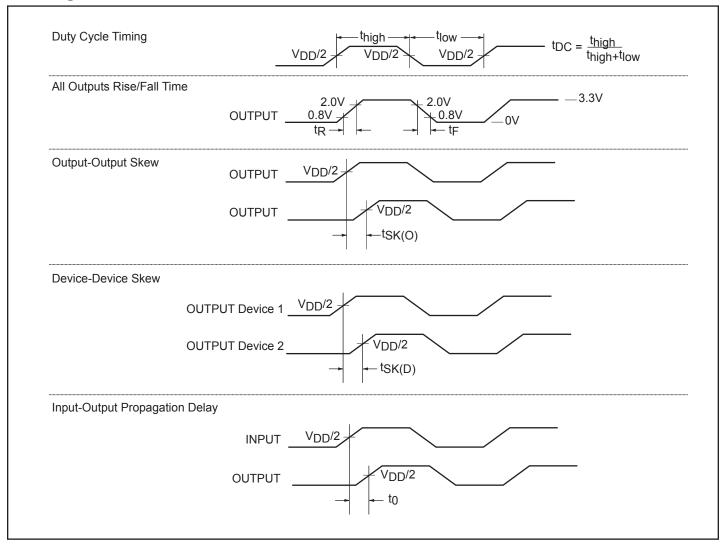
Note:

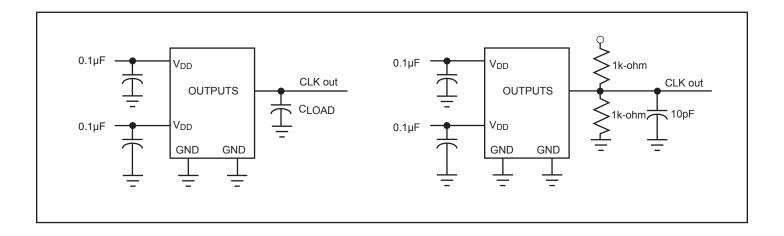
DC Electrical Characteristics for Commercial Temperature Devices

Parameters	Description	Test Conditions	Min.	Max.	Units	
$V_{ m IL}$	Input LOW Voltage	-	-	0.8	V	
V_{IH}	Input HIGH Voltage	-	2.0	-	V	
I _{IL}	Input LOW Current	$V_{IN} = 0V$	-	50	4	
I_{IH}	Input HIGH Current	$V_{IN} = V_{DD}$	- :		μA	
$V_{ m OL}$	Output LOW Voltage	$I_{OL} = 12mA$	-	0.4	V	
V_{OH}	Output HIGH Voltage	$I_{OH} = -12mA$	2.4	-	V	
	Bypass, PLL off	SEL1 = 0 SEL2 = 1	-	1.0		
$I_{ m DD}$	Samuela Carrent	Unloaded outputs, 66.67 MHz, Select inputs at V _{DD} or GND	-	39	mA	
	Supply Current	Unloaded outputs 100 MHz Select Inputs @ V _{DD} or GND	-	54		

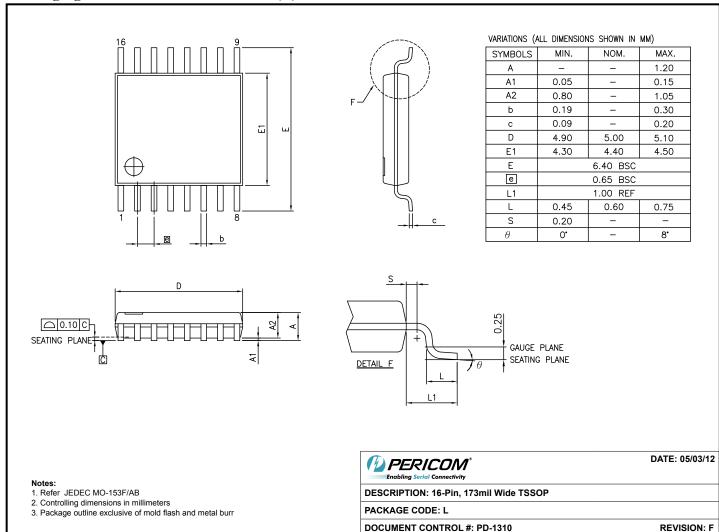
^{1.} See Switching Waveforms on page 6.

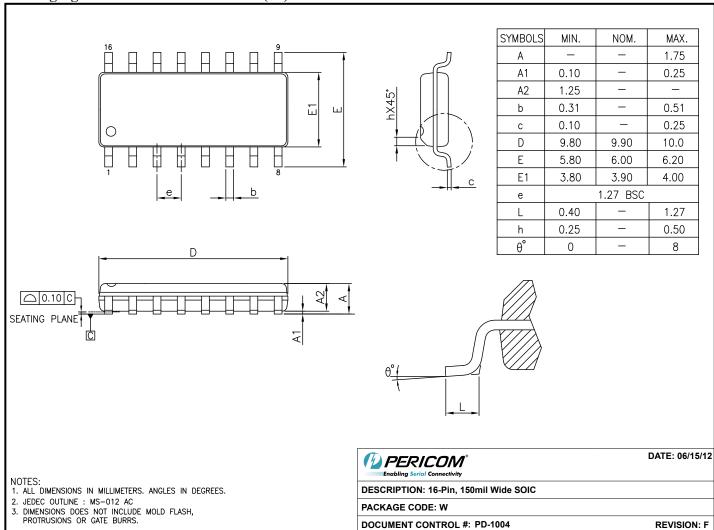
AC Electrical Characteristics for Commercial Temperature Devices


Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
Е	Outrast Francisco	30pF load	10.0		100	MII-
F_{O}	Output Frequency	10pF load	10.0		133	MHz
4	Duty Cycle ⁽¹⁾ Measured at $V_{DD}/2$, $F_O = 66.67 \text{ MHz}$ 40.0	50	60.0	0/0		
t _{DC}	Duty Cycle ⁽¹⁾	Measured at $V_{DD}/2V$, $F_O < 50 \text{ MHz}$	45.0	30	55.0	70
t_{R}	Rise Time ⁽¹⁾	Macanadhatanan 0000 and 2000			1.5	
t_{F}	Fall Time ⁽¹⁾	Measured between 0.8V and 2.0V			1.5	ns
t _{SK(O)}	Output to Output Skew ⁽¹⁾	All outputs equally loaded			250	
t_0	Delay, CLKIN Rising Edge to OUT0 Rising Edge ⁽¹⁾	Measured at V _{DD} /2		0	±350	ps
t _{SK(D)}	Device-to-Device Skew ⁽¹⁾	Measured at V _{DD} /2 on OUT0 pins of devices		0	700	
t _{SLEW}	Output Slew Rate ⁽¹⁾	Measured between 0.8V & 2.0V on –1H device using Test Crt #2	1			V/ns
t _{JIT}	Cycle-to-Cycle Jitter ⁽¹⁾	Measured at 66.67 MHz, loaded 30pF load			200	ps
t _{LOCK}	PLL Lock Time ⁽¹⁾	Stable power supply, valid clocks presented on CLKIN pin			1.0	ms


Note:

1. See Switching Waveforms on page 6.


Switching Waveforms


Packaging Mechanical: 16-Pin TSSOP (L)

12-0372

2012-0398

Ordering Information

Ordering Code	Package Code	Package Description	Operating Range
PI6C2409-1HLE	L	16-pin, 173-mil Wide (TSSOP)	Commercial
PI6C2409-1HLEX	L	16-pin, 173-mil Wide (TSSOP), Tape & Reel	Commercial
PI6C2409-1HLIE	L	16-pin, 173-mil Wide (TSSOP)	Industrial
PI6C2409-1HLIEX	L	16-pin, 173-mil Wide (TSSOP), Tape & Reel	Industrial
PI6C2409-1HWE	W	16-pin, 150-mil Wide (SOIC)	Commercial
PI6C2409-1HWEX	W	16-pin, 150-mil Wide (SOIC), Tape & Reel	Commercial
PI6C2409-1HWIE	W	16-pin, 150-mil Wide (SOIC)	Industrial
PI6C2409-1HWIEX	W	16-pin, 150-mil Wide (SOIC), Tape & Reel	Industrial

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336