

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

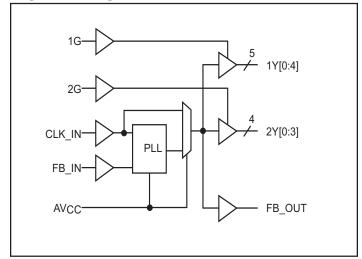
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

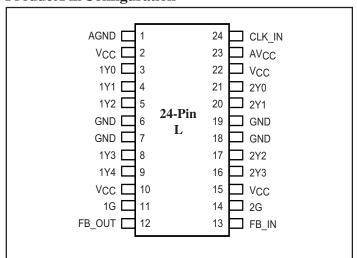
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low-Noise Phase-Locked Loop Clock Driver with 9 Clock Outputs

Features


- Operating Frequency up to 150 MHz
- Low-Noise Phase-Locked Loop Clock Distribution to meet 133 MHz Registered DIMM Synchronous DRAM module specifications for server/workstation/PC applications
- Allows Clock Input to have Spread Spectrum modulation for EMI reduction
- Zero input-to-output delay: Distribute One Clock Input to one bank of five and one bank of four outputs, with separate output enables
- Low jitter: cycle-to-cycle jitter ±75ps max.
- 30-ohm on-chip series damping resistor at clock output drivers for low noise and EMI reduction
- Operates at 3.3V V_{CC}
- Package (Pb-free and Green available):
 - 24-pin TSSOP(L)

Description


The PI6C2509-133 is a "quiet," low-skew, low-jitter, phase-locked loop (PLL) clock driver, distributing low-noise clock signals for SDRAM and server applications. By connecting the feedback FB_OUT output to the feedback FB_IN input, the propagation delay from the CLK_IN input to any clock output will be nearly zero. This zero-delay feature allows the CLK_IN input clock to be distributed, providing 5 clocks for the first bank, and an additional 4 clocks for the second bank.

This clock driver is designed to meet the PC133 SDRAM Registered DIMM specification. For test purposes, the PLL can be bypassed by strapping AV_{CC} to ground.

Logic Block Diagram

Product Pin Configuration

Functional Table

Input Control	Outputs		
X ⁽¹⁾ G	X ⁽¹⁾ Y[0:3]	FB_OUT	
L	L	CLK_IN	
Н	CLK_IN	CLK_IN	

Note:

1. X is either 1 or 2

Pin Functions

Pin Name	Pin No.	Туре	Description
CLK_IN	24	I	Clock input. CLK_IN allows spread spectrum.
FB_IN	13	I	Feedback input. FB_IN provides the feedback signal to the internal PLL.
1G	11	Ι	Output bank enable. When 1G is LOW, outputs 1Y[0:4] are disabled to a logic low state. When 1G is HIGH, all outputs 1Y[0:4] are enabled.
2G	14	Ι	Output bank enable. When 2G is LOW, outputs 2Y[0:3] are disabled to a logic low state. When 2G is HIGH, all outputs 2Y[0:3] are enabled.
FB_OUT	12	О	Feedback output. FB_OUT is dedicated for external feedback. FB_OUT has an embedded series-damping resistor of the same value as the clock outputs 1Yx, 2Yx.
1Y[0:4]	3,4,5,8,9	О	Clock outputs. These outputs provide low-skew copies of CLK_IN. Each output has an embedded series-damping resistor.
2Y[3:0]	16,17, 20, 21	O	Clock outputs. These outputs provide low-skew copies of CLK_IN. Each output has an embedded series-damping resistor.
AV _{CC}	23	Power	Analog power supply. AV_{CC} can be also used to bypass the PLL for test purposes. When AV_{CC} is strapped to ground, PLL is bypassed and CLK_IN. is buffered directly to the device outputs.
AGND	1	Ground	Analog ground. AGND provides the ground reference for the analog circuitry.
V _{CC}	2,10,15,22	Power	Power supply.
GND	6,7,18,19	Ground	Ground.

PS8544D 11/17/09 09-0006 2

DC Specifications (Absolute maximum ratings over operating free-air temperature range)

Symbol	Parameter	Min.	Max.	Units
V _I	Input voltage range		V _{CC} + 0.5	
V_{O}	Output voltage range	-0.5		V
V _L DC	DC input voltage		+5.0	
I _O _DC	DC output current		100	mA
Power	Maximum power dissipation at $T_A = 55$ °C in still air		1.0	W
T_{STG}	Storage temperature	-65	150	°C

Note:

Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Parameter	Test Conditions	V _{CC}	Min.	Тур.	Max.	Units
I_{CC}	$V_{\rm I} = V_{\rm CC}$ or GND; $I_{\rm O} = 0^{(1)}$	3.6V			10	μΑ
C _I	$V_{I} = V_{CC}$ or GND	2.27/		4		F
C _O	$V_O = V_{CC}$ or GND	3.3V		6		pF

Note:

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Supply voltage (Commercial)	3.0	3.6	
	Supply voltage (Industrial)	3.135	3.465	
$V_{ m IH}$	High level input voltage	2.0		V
$V_{ m IL}$	Low level input voltage		0.8	
V _I	Input voltage	0.0	V _{CC}	
T_{A}	Operating free-air temperature (Commercial)	0	70	°C
	Operating free-air temperature (Industrial)	-40	85	

Electrical Characteristics (Over recommended operating free-air temperature range)

Pull Up/Down Currents: $V_{CC} = 3.0 \text{V} (V_{CC} = 3.135 \text{V})$

Symbol	Parameter	Condition	Min.	Max.	Units
I	Pull-up current	$V_{OUT} = 2.4V$		-13.6	
I_{OH}	Pull-up current	$V_{OUT} = 2.0V$		-22	
Ţ	Pull-down current	$V_{OUT} = 0.8V$	19		mA
I_{OL}	Pull-down current	$V_{OUT} = 0.55V$	13		

^{1.} Continuous output current

AC Specifications

(Timing requirements over recommended ranges of supply voltage and operating free-air temperature.)

Symbol	Parameter	Min.	Max.	Units	
F _{CLK}	Input clock frequency (Commercial)	25	150	MHz	
	Input clock frequency (Industrial)	25	125	MHZ	
	Input clock duty cycle	40	60	%	
	Stabilization time after power up		1	ms	

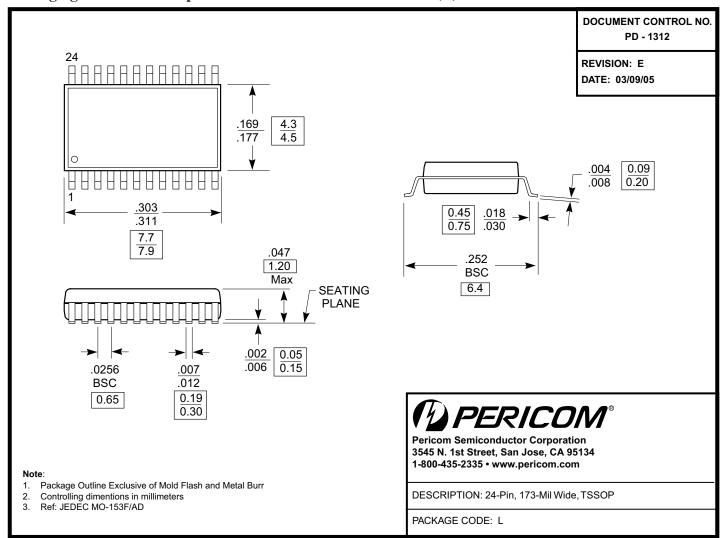
Switching Characteristics

(Over recommended ranges of supply voltage and commercial temperature, $V_{CC}=3.3V\pm0.3V$, $T_A=0\sim70^{\circ}C$, $C_L=15pF$)

Parameter	Test Conditions	Min.	Тур.	Max.	Units
t _{pe} , Phase error	CLK_IN to FB_IN, f = 133 MHz	-150		150	
t _j , Jitter (cycle-to-cycle)	f = 133 MHz	-75		75	ps
t _{sk} , Output skew	Yn or FB_OUT to Yn or FB_OUT			150	
t _{dc} , Duty cycle	$f = 133 \text{ MHz}, V_{CC}/2$	45	50	55	%
t _r , Rise time	$V_O = 0.4 V$ to $2V$		1.0		
t _f , Fall time	$V_O = 2V$ to $0.4V$		1.1		ns

Switching characteristics

(Over recommended ranges of supply voltage and industrial temperature, $V_{CC}=3.3V\pm0.165V$, $T_A=-40\sim85^{\circ}C$, $C_L=15pF$)


Parameter	Test Conditions	Min.	Тур.	Max.	Units
t _{pe} , Phase error	CLK_IN to FB_IN, f = 125 MHz	-150		150	
t _j , Jitter (cycle-to-cycle)	f = 125 MHz	-75		75	ps
t _{sk} , Output skew	Yn or FB_OUT to Yn or FB_OUT			150	
t _{dc} , Duty cycle	$f = 125 \text{ MHz}, V_{CC}/2$	45	50	55	%
t _r , Rise time	$V_O = 0.4 V$ to $2V$		1.0		ne
t _f , Fall time	$V_O = 2V$ to $0.4V$		1.1		ns

Note: These switching parameters are guaranteed, but not production tested.

09-0006 4 PS8544D 11/17/09

Packaging Mechanical: 24-pin Plastic Thin Shrink Small-Outline (L)

Note:

For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Packaging Code	Package Types
PI6C2509-133LEX	L	Pb-free and Green, 24-pin, 173 mil TSSOP

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • http://www.pericom.com