

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

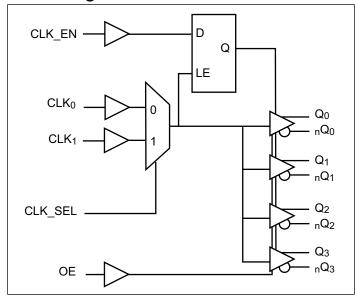
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

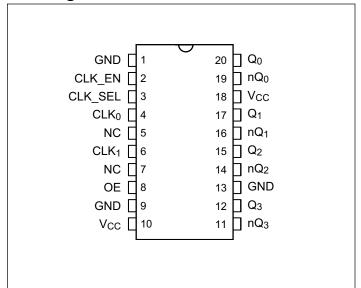
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V Low Skew 1-to-4 LVTTL/LVCMOS to LVDS Fanout Buffer


Features

- → Maximum operation frequency: 650 MHz
- → 4 pair of differential LVDS outputs
- → Selectable CLK₀ and CLK₁ inputs
- → CLK₀, CLK₁ accept LVCMOS, LVTTL input level
- → Output Skew: 40ps (maximum)
- → Part-to-part skew: 300ps (maximum)
- → Propagation delay: 2.2ns (maximum)
- → 3.3V power supply
- → Pin-to-pin compatible to ICS8545
- → Operating Temperature: -40°C to 85°C
- → Packaging (Pb-free & Green):
 - 20-pin TSSOP (L)


Description

The PI6C48545 is a high-performance low-skew LVDS fanout buffer. PI6C48545 features two selectable single-ended clock inputs and translate to four LVDS outputs. The CLK $_0$ and CLK $_1$ inputs accept LVCMOS or LVTTL signals. The outputs are synchronized with input clock during asynchronous assertion/deassertion of CLK_EN pin. PI6C48545 is ideal for single-ended LVTTL/LVCMOS to LVDS translations. Typical clock translation and distribution applications are data-communications and telecommunications.

Block Diagram

Pin Diagram

Pin Description

Name	Pin #	Type	Description
GND	1, 9, 13	P	Connect to Ground
CLK_EN	2	I_PU	Synchronizing clock enable. When high, clock outputs follow clock input. When low, Qx outputs are forced low, nQx outputs are forced high. LVCMOS/LVTTL level with $80k\Omega$ pull up.
CLK_SEL	3	I_PD	Clock select input. When high, selects CLK_1 input. When low, selects CLK_0 input. LVCMOS/LVTTL level with $80k\Omega$ pull down.
CLK ₀	4	I_PD	LVCMOS / LVTTL clock input
CLK ₁	6	I_PD	LVCMOS / LVTTL clock input
NC	5, 7		No internal connection.
OE	8	I_PU	Output Enable. Controls outputs Q ₀ , _n Q ₀ through Q ₃ , nQ ₃ .
V_{CC}	10, 18	P	Connect to 3.3V.
Q ₃ , _n Q ₃	12, 11	О	Differential output pair, LVDS interface level.
Q ₂ , _n Q ₂	15, 14	О	Differential output pair, LVDS interface level.
$Q_1, {}_nQ_1$	17, 16	О	Differential output pair, LVDS interface level.
Q ₀ , _n Q ₀	20, 19	О	Differential output pair, LVDS interface level.

Notes:

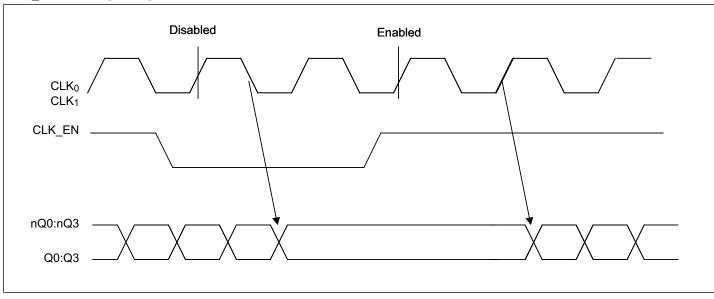
Pin Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C_{IN}	Input Capacitance			6		pF
R_pullup	Input Pullup Resistance			80		1-0
R_pulldown	Input Pulldown Resistance			80		kΩ

Control Input Function Table

		Inputs	Out	puts	
OE	CLK_EN	CLK_SEL	Selected Source	Q ₀ :Q ₃	$_{n}Q_{0}:_{n}Q_{3}$
1	0	0	CLK ₀	Diasbled: Low	Diasbled: High
1	0	1	CLK ₁	Disabled: Low	Disabled: High
1	1	0	CLK ₀	Enabled	Enabled
1	1	1	CLK ₁	Enabled	Enabled
0	x	X		HiZ	HiZ

Notes:


^{1.} I = Input, O = Output, P = Power supply connection, I_PD = Input with pull down, I_PU = Input with pull up.

^{1.} After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as show below.

CLK_EN Timing Diagram

Clock Input Function Table

Inputs	Oı	ıtputs
CLK ₀ or CLK ₁	Q ₀ :Q ₃	$_{n}Q_{0}$: $_{n}Q_{3}$
0	LOW	HIGH
1	HIGH	LOW

Absolute Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V_{CC}	Supply voltage	Referenced to GND			4.6	
V_{IN}	Input voltage	Referenced to GND	-0.5		V _{CC} +0.5V	V
V _{OUT}	Output voltage	Referenced to GND	-0.5		V _{CC} +0.5V	
T _{STG}	Storage temperature		-65		150	°C

Notes:

Operating Conditions

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{CC}	Power Supply Voltage		3.135	3.3	3.465	V
T_{A}	Ambient Temperature		-40		85	°C
I _{CC}	Power Supply Current				60	mA

LVCMOS/LVTTL DC Characteristics ($T_A = -40^{\circ}$ C to 85° C, $V_{CC} = 3.135$ V to 3.465V unless otherwise stated below.)

Symbol		Parameter	Conditions	Min.	Тур.	Max.	Units
$V_{ m IH}$	Input High Voltage	CLK ₀ , CLK ₁ , CLK_EN, CLK_SE, OE		2		V _{CC} +0.3	V
N/	Input Low	CLK ₀ , CLK ₁		-0.3		1.3	V
V _{IL}	V _{IL} Voltage	CLK_EN, CLK_SEL, OE		-0.3		0.8	V
Ţ	Input High	CLK0, CLK1, CLK_SEL	$V_{IN} = V_{CC} = 3.465V$			150	uA
I _{IH}	Current	CLK_EN, OE	$V_{IN} = V_{CC} = 3.465V$			5	uA
T	Input Low	CLK ₀ , CLK ₁ , CLK_SEL	$V_{IN} = 0V, V_{CC} = 3.465V$	-5			uA
${ m I}_{ m IL}$	Current	CLK_EN, OE	$V_{IN} = 0V, V_{CC} = 3.465V$	-150			uA

LVDS DC Characteristics ($T_A = -40^{\circ}$ C to 85°C, $V_{CC} = 3.135$ V to 3.465V unless otherwise stated below.)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V_{OD}	Differential Output Voltage		200	280	360	mV
ΔV_{OD}	V _{OD} Magnitude Change			0	40	111 V
Vos	Offset Voltage		1.125	1.3	1.475	V
ΔV_{OS}	V _{OS} Magnitude Change			5	25	mV
I _{OZ}	High Impedance Leakage Current		-10		+10	4
I _{OFF}	Power OFF Leakage		-20	±1	+20	μΑ
I _{OSD}	Differential Output Short Circuit Current			-3.5	-5	A
Ios	Output Short Circuit Current			-3.5	-5	mA
V _{OH}	Output Voltage High			1.34	1.6	V
V_{OL}	Output Voltage Low		0.9	1.06		v

^{1.} Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and correct functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

AC Characteristics ($T_A = -40^{\circ}\text{C}$ to 85°C , $V_{CC} = 3.135\text{V}$ to 3.465V)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{max}	Output Frequency				650	MHz
t _{Pd}	Propagation Delay ⁽¹⁾		0.8		2.2	ns
T _{sk(o)}	Output-to-output Skew ⁽²⁾				40	
T _{sk(pp)}	Part-to-part Skew ⁽³⁾				300	ps
t _r /t _f	Output Rise/Fall time	20% - 80%	100		300	
odc	Output duty cycle		48		52	%

Notes:

- 1. Measured from the $V_{CC}/2$ of the input to the differential output crossing point
- 2. Defined as skew between outputs at the same supply voltage and with equal load condition. Measured at the outputs differential crossing point.
- 3. Defined as skew between outputs on different parts operating at the same supply voltage and with equal load condition. Measured at the outputs differential crossing point.
- 4. All parameters are measured at 500MHz unless noted otherwise

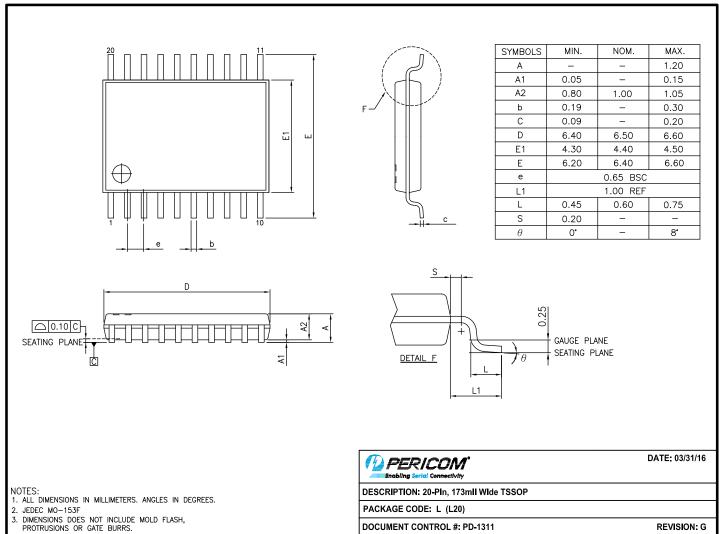
Part Marking

L Package

PI6C 48545LE CYYWWXX

C: Die Rev YY: Year

WW: Workweek


1st X: Assembly Code

2nd X: Fab Code

Packaging Mechanical: 20-TSSOP (L)

16-0074

For latest package info.

 $please\ check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packagin$

Ordering Information

Ordering Code	Package Code	Package Description
PI6C48545LEX	L	20-pin, 173-mil Wide (TSSOP)

Notes:

- 1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
- 2. See http://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/
- 3. E = Pb-free and Green
- 4. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated www.diodes.com