imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PI6C49003

Networking Clock Generator

Features

- 3.3V +/-10% Supply Voltage
- Uses 25MHz xtal such as Saronix-eCera[™] SRX7278
- Five PCIe® 100MHz outputs with optional -0.5% spread spectrum support
- Two LVCMOS 50MHz outputs that support +/- 10% frequency margining
- One frequency selectable 33/66/133MHz LVCMOS output
- One 32.256MHz LVCMOS output
- Industrial temperature -40°C to 85°C
- Package: 48-pin TSSOP package

Description

The PI6C49003 is a clock generator device intended for PCIe®/ networking applications. The device includes five 100MHz differential Host Clock Signal Level (HCSL) outputs for PCIe, two single-ended 50 MHz outputs, one single-ended 32.256MHz output, and one selectable single-ended 33/66/133 MHz output.

Using a serially programmable SMBUS interface, the PI6C49003 incorporates spread spectrum modulation on the five 100 MHz HCSL PCIe outputs, and independent frequency margining on the 50MHz output, 33.3333MHz and 66.6666MHz clock outputs.

Pin Configuration

Г

			1
	VDD	1 48	GND
	IREF	2 47	VDD
	NC	3 46	100M_Q0-
	NC	4 45	100M_Q0+
	VDD	5 44	100M_Q1+
	VDD	6 43	100M_Q1-
	GND	7 42	VDD
	GND	8 41	GND
Block Diagram	VDD	9 40	VDD
VDD	GND	10 39	100M_Q2+
	VDD	11 38	100M_Q2-
	SCLK	12 37	100M_Q3+
	SDATA	13 36	100M_Q3-
25 MHz Clock Buffer/ crystal or clock input	GND	14 35	VDD
Clock input) 50M_Out1	15 34	GND
	50M_Out2	16 33	VDD
PLL, Dividers, 50M_OUT(1-2)	VDD	17 32	100M_Q4+
Buffers, and Logic 33/66/133M_OUT	GND	18 31	100M_Q4-
	VDD	19 30	33/66/133M_Ou
SCLK	32.256M_Out1	20 29	VDD
SDATA	GND	21 28	GND
	NC	22 27	VDD
	NC	23 26	X2
- 10	PD_RESET	24 25	X1
The second secon]
GND 1%			

Pin Description

Pin #	Pin Name	Pin Type	Pin Description
1	V _{DD}	Power	3.3V Supply Pin
2	IREF	Output	Connect to 475-Ohm resistor to set HCSL output drive current
3	NC		No connect. Leave open
4	NC		No connect. Leave open
5	V _{DD}	Power	3.3V Supply Pin
6	V _{DD}	Power	3.3V Supply Pin
7	GND	Power	Ground
8	GND	Power	Ground
9	V _{DD}	Power	3.3V Supply Pin
10	GND	Power	Ground
11	V _{DD}	Power	3.3V Supply Pin
12	SCLK	Input	SMBus compatible input clock. Supports fast mode 400kHz input clock.
13	SDATA	I/O	SMBus compatible data line
14	GND	Power	Ground
15	50M_Out1	Output	50MHz LVCMOS output. When disabled, output is trisated and has a nominal 110k- Ohm pull-down.
16	50M_Out2	Output	50MHz LVCMOS output. When disabled, output is trisated and has a nominal 110k- Ohm pull-down.
17	V _{DD}	Power	3.3V Supply Pin
18	GND	Power	Ground
19	V _{DD}	Power	3.3V Supply Pin
20	32.256M_Out1	Output	32.256MHz LVCMOS output. When disabled, output is trisated and has a nominal 110k-Ohm pull-down.
21	GND	Power	Ground
22	NC		
23	NC		
24	PD_RESET	Input	Power down reset - when low all PLL's are powered down and outputs tristated. SMBus registers are reset to default values.
25	X1	Input	Crystal input. Integrated 6pF capacitance
26	X2	Output	Crystal output. Integrated 6pF capacitance
27	V _{DD}	Power	3.3V Supply Pin
28	GND	Power	Ground
29	V _{DD}	Power	3.3V Supply Pin
30	33/66/133M_Out1	Output	33/66/133MHz selectable LVCMOS output. When disabled, output is trisated and has a nominal 110k-Ohm pull-down.
31	100M_Q4-	Output	100MHz HCSL output
32	100M_Q4+	Output	100MHz HCSL output
33	V _{DD}	Power	3.3V Supply Pin
34	GND	Power	Ground
35	V _{DD}	Power	3.3V Supply Pin
(Continu	(led)		

(Continued)

Pin #	Pin Name	Pin Type	Pin Description
36	100M_Q3-	Output	100MHz HCSL output
37	100M_Q3+	Output	100MHz HCSL output
38	100M_Q2-	Output	100MHz HCSL output
39	100M_Q2+	Output	100MHz HCSL output
40	V _{DD}	Power	3.3V Supply Pin
41	GND	Power	Ground
42	V _{DD}	Power	3.3V Supply Pin
43	100M_Q1-	Output	100MHz HCSL output
44	100M_Q1+	Output	100MHz HCSL output
45	100M_Q0+	Output	100MHz HCSL output
46	100M_Q0-	Output	100MHz HCSL output
47	V _{DD}	Power	3.3V Supply Pin
48	GND	Power	Ground

50MHz Frequency Margining Table

		1 0		8 8
FS3	FS2	FS1	FS0	50M_OUT1, 50M_OUT2
0	0	0	0	nominal
0	0	0	1	nominal + 1%
0	0	1	0	nominal + 2%
0	0	1	1	nominal + 3%
0	1	0	0	nominal + 4%
0	1	0	1	nominal + 5%
0	1	1	0	nominal + 6%
0	1	1	1	nominal + 8%
1	0	0	0	nominal + 10%
1	0	0	1	nominal - 1%
1	0	1	0	nominal - 2%
1	0	1	1	nominal - 3%
1	1	0	0	nominal - 4%
1	1	0	1	nominal - 6%
1	1	1	0	nominal - 8%
1	1	1	1	nominal - 10%

33/66/100MHz Frequency Margining Table

FS6	FS5	FS4	33M/66M/133M_OUT1
0	0	0	33.3333 MHz
0	0	1	66.6666MHz +2%
0	1	0	66.6666MHz +1%
0	1	1	66.6666MHz +0%
1	0	0	66.6666MHz -2%
1	0	1	66.6666MHz -4%
1	1	0	66.6666MHz -6%
1	1	1	133.3333 MHz

Serial Data Interface (SMBus)

This part is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	0	0	1	0/1

How to Write

1 bit	8 bits	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit
Start bit	d2H	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	 Data Byte N - 1	Ack	Stop bit

Note:

1. Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

How to Read (M: abbreviation for Master or Controller; S: abbreviation for slave/clock)

1 bit	8 bits	1 bit	8 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	 8 bits	1 bit	1 bit
M: Start bit	M: Send "D2h"	S: sends Ack	M: send start- ing data- byte loca- tion: N	S: sends Ack	M: Start bit	M: Send "D3h"	S: sends Ack	S: sends # of data bytes that will be sent: X	M: sends Ack	S: sends start- ing data byte N	M: sends Ack	 S: sends data byte N+X- 1	M: Not Ac- knowl- edge	M: Stop bit

Byte 0: Spread Spectrum Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	Spread Spectrum Selection for 100 MHz HCSL PCI-Express clocks	RW	0	All 100MHz HCSL PCI Express outputs	0=spread off 1 = -0.5% down spread
6	Enables hardware or software control of OE bits (see Byte 0–Bit 6 and Bit 5 Functionality table)	RW	0	PD_RESET pin, bit 5	0 = hardware cntl 1 = software ctrl
5	Software PD_RESET bit. Enables or disables all outputs (see Byte 0–Bit 6 and Bit 5 Functionality table)	RW	1	All outputs	0 = disabled 1 = enabled
4	Frequency margining select bit FS3	RW	1		
3	Frequency margining select bit FS2	RW	0	50M Out1 and	See 50MHz Fre-
2	Frequency margining select bit FS1	RW	1	50M_Out2	quency Select Table
1	Frequency margining select bit FS0	RW	0		on Page 3
0	OE for single-ended 50 MHz output 50M_Out2	RW	1	Single-ended 50MHz output 50M_Out2	0 = disabled 1 = enabled

Byte 0 - Bit 6 and Bit 5 Functionality

Bit 6	Bit 5	Description
0	X	PD_RESET HW pin/signal = enabled
1	0	Disables all outputs and tri-states the outputs, PD_RESET HW pin/signal = DO NOT CARE
1	1	Enable all outputs, PD_RESET HW pin/signal = DON'T CARE

Byte 1: Control Register

Bit	Description	Туре	Power Up Condi- tion	Output(s) Affected	Notes
7	OE for 32.256M_Out1	RW	1	32.256M_Out1	0 = disabled 1 = enabled
6	OE for 50M_Out1	RW	1	50M_Out1	0 = disabled 1 = enabled
5	OE for 33/66/133M_Out1	RW	1	33/66/133M_Out1	0 = disabled 1 = enabled
4	Reserved	RW	1	Not Applicable	
3 to 0	Reserved	RW	0	Not Applicable	

Byte 2: Control Register

Bit	Description	Туре	Power Up Condi- tion	Output(s) Affected	Notes	
7	Frequency margining select bit FS6	RW	1		See 33/66/100MHz	
6	Frequency margining select bit FS5	RW	0	33/66/133M_Out1	Frequency Select	
5	Frequency margining select bit FS4	RW	0		Table on Page 3	
4 to 0	Reserved	R	Undefined	Not Applicable		

Byte 3: Control Register

Bit	Description	Туре	Power Up Con- dition	Output(s) Affected	Notes
7	OE for 100M_Q4 HCSL Output	RW	0	100M_Q4	0 = disabled 1 = enabled
5	OE for 100M_Q3 HCSL Output	RW	0	100M_Q3	0 = disabled 1 = enabled
4	OE for 100M_Q2 HCSL Output	RW	0	100M_Q2	0 = disabled 1 = enabled
2	OE for 100M_Q1 HCSL Output	RW	1	100M_Q1	0 = disabled 1 = enabled
1	OE for 100M_Q0 HCSL Output	RW	1	100M_Q0	0 = disabled 1 = enabled
3, 6	Reserved	RW	0	Not Applicable	
0	Reserved	R	Undefined	Not Applicable	

Byte 4: Control Register

Bit	Description	Туре	Power Up Condi- tion	Output(s) Affected	Notes
7 to 0	Reserved	R	Undefined	Not Applicable	

Byte 5: Control Register

Bit	Description	Туре	Power Up Condi- tion	Output(s) Affected	Notes
7	Revivsion ID bit 3	R	0	Not Applicable	
6	Revivsion ID bit 2	R	0	Not Applicable	
5	Revivsion ID bit 1	R	0	Not Applicable	
4	Revivsion ID bit 0	R	0	Not Applicable	
3	Vendor ID bit 3	R	0	Not Applicable	
2	Vendor ID bit 2	R	0	Not Applicable	
1	Vendor ID bit 1	R	1	Not Applicable	
0	Vendor ID bit 0	R	1	Not Applicable	

Byte 6: Control Register

Bit	Description	Туре	Power Up Condi- tion	Output(s) Affected	Notes
7 to 0	Reserved	R	Undefined	Not Applicable	

Parameters	Min.	Max.	Units		
3.3V I/O Supply Voltage	-0.5	4.6			
Input High Voltage		4.6	V		
Input Low Voltage	-0.5				
Storage Temperature	-65	150	°C		
ESD Protection	2000		V		
	3.3V I/O Supply Voltage Input High Voltage Input Low Voltage Storage Temperature	3.3V I/O Supply Voltage-0.5Input High Voltage-0.5Input Low Voltage-0.5Storage Temperature-65	3.3V I/O Supply Voltage-0.54.6Input High Voltage4.6Input Low Voltage-0.5Storage Temperature-65150		

Absolute Maximum Ratings¹ (Over operating free-air temperature range)

Note:

1. Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Maximum Supply Voltage, V _{DD}	7V
All Inputs and Outputs	–0.5V to V_{DD} +0.5V
Ambient Operating Temperature	40°C to +85°C
Storage Temperature	65°C to +150°C
Junction Temperature	125°C
Peak Soldering Temperature	260°C

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics

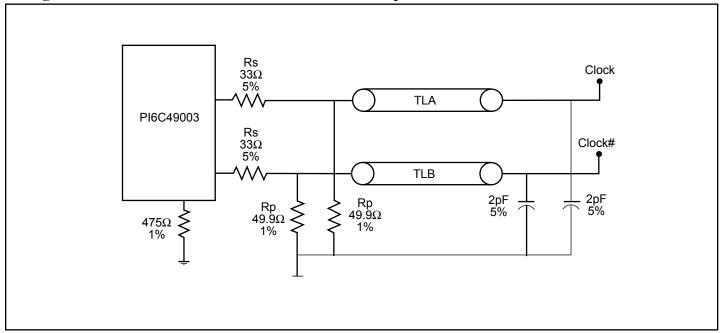
Unless otherwise specified, V_{DD}=3.3V±10%, Ambient Temperature -40°C to +85°C

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Operating Supply Volt- age	V _{DD}		3.0		3.6	
Input High Voltage	V _{IH}		2		V _{DD}	
Input Low Voltage	V _{IL}		-0.3		0.8	V
Input High Voltage	V _{IH}	SDATA, SCLK	0.7V _{DD}		V _{DD}	
Input Low Voltage	V _{IL}	SDATA, SCLK			0.3V _{DD}	
Operating Supply Cur- rent	I _{DD}			150		
IDD at Output Disable Condition		$\overline{PD_RESET} = 0$		5		— mA
Internal Pull-Up/Pull-	R _{PU} /R _{PD}	PD_RESET		240		k–Ohm
Down Resistor		All single-ended outputs		110		
Input Capacitance	C _{IN}	All input pins		6		pF

Electrical Characteristics - Single-Ended Unless otherwise specified, V_{DD}=3.3V±10%, Ambient Temperature -40°C to +85°C

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Clock Frequency	F _{IN}			25		MHz
SCLK Frequency				100	400	kHz
Min. pulse width of PD_RESET Input			100			ns
Output Frequency Error		FS0, FS6 = 0		0		
Output Frequency Error		32.256MHz			7	ppm
Output Rise/Fall Time	t _{r,} t _f	V _{DD} =3.3V, 0.8V to 2.4V		0.5	1	ns
Output Clock Duty Cycle		Measured at $V_{DD}/2$	45	50	55	%
High-Level Output Voltage	V _{OH}	$I_{OH} = -4mA$	VDD-0.4			
High-Level Output Voltage	V _{OH}	I _{OH} = -8mA	2.4			V
Low-Level Output Voltage	V _{OL}	$I_{OL} = 8mA$			0.4	
		50 MHz clock output		140	200	
Peak-to-Peak Jitter		33/66/133MHz clock output		125	175	
		32.256 MHz clock output		115	150	ps
Cycle-to-Cycle Jitter		50 MHz clock output		120	175	
		33/66/133 MHz clock output		120	160	
Clock Stabilization Time from Power Up			3		10	ms

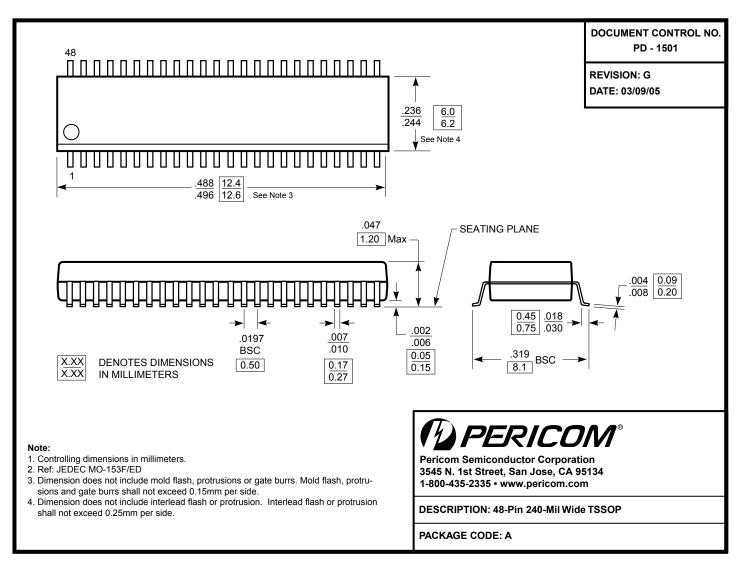
Electrical Characteristics - 100MHz Differential HCSL Outputs


Unless otherwise specified, V_{DD}=3.3V±10%, Ambient Temperature -40°C to +85°C

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Output Frequency					100	MHz
Cycle-to-Cycle Jitter	T _{CC/Jitter}				150	
Peak-to-Peak Phase Jitter		Using PCIe jitter measure- ment method			86	ps
Spread Modulation Percentage				-0.5	0	%
Spread Modulation Frequency				32		kHz
Duty Cycle	T _{DC}		45	50	55	%
Rising Edge Rate		Note 3, 4	0.6		4.0	N/m
Falling Edge Rate		Note 3, 4	0.6		4.0 V/ns	
Output Skew	T _{OSKEW}	$V_T = 50\%$ (measurement threshold)			200	ps
Clock Source DC Impedance, single ended	Z _{C-DC}			50		Ohm
High-Level Output Voltage	V _{OH}	Note 2, (R_S =33-Ohm, R_T =50-Ohm)	0.65	0.71	0.85	
Low-Level Output Voltage	V _{OL}		-0.20	0	0.05	V
I _{OH} @ 6*I _{REF}	I _{OH}		-13	-14.2	-17	mA
Absolute Crossing Point Voltage	V _{CROSS}	Note 2, 5, 6	0.25		0.55	V
Variation of VCROSS over all ris- ing clock edges	V _{CROSS Delta}	Note 2, 5, 8			140	mV
Average Clock Period Accuracy	T _{PERIOD} AVG	Note 3, 9, 10	-300		2800	ppm
Absolute Period (including jitter and spread spectrum)	T _{PERIOD ABS}	Note 3, 7	9.847		10.203	ns

(Continued)

Notes:


- 1. Measured at the end of an 8-inch trace with a 5pF load.
- 2. Measurement taken from a single-ended waveform.
- 3. Measurement taken from a differential waveform.
- 4. Measured from -150 mV to +150 mV on the differential waveform. The signal is monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.
- 5. Measured at crossing point where the instantaneous voltage value of the rising edge of 100M+ equals the falling edge 100M–.
- 6. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
- 7. Defines as the absolute minimum or maximum instantaneous period. This includes cycle-to-cycle jitter, relative PPM tolerance, and spread spectrum modulation.
- 8. Defined as the total variation of all crossing voltages of rising 100M+ and falling 100M-.
- 9. Refer to section 4.3.2.1 of the PCI Express Base Specification, Revision 1.1 for information regarding PPM considerations.
- 10. PPM refers to parts per million and is a DC absolute period accuracy specification. 1 PPM is 1/1,000,000th of 100 MHz exactly or 100 Hz. For 300 PPM there is an error budget of 100Hz/PPM * 300 PPM = 30 kHz. The period is measured with a frequency counter with measurement window set at 100 ms or greater. With spread spectrum turned off the error is less than ±300 ppm. With spread spectrum turned on there is an additional +2500 PPM nominal shift in maximum period resulting from the -0.5% down spread.

Configuration test load board termination for HCSL Outputs

Figure 4. Configuration Test Load Board Termination

PERICOM[®]

Note:

· For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description
PI6C49003AE	А	48-pin, Pb-free & Green, TSSOP, (A48)

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

2. E = Pb-free and Green

3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com