

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

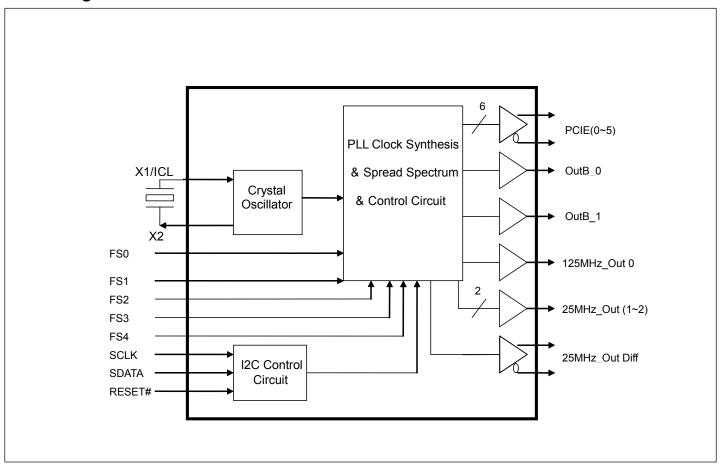
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

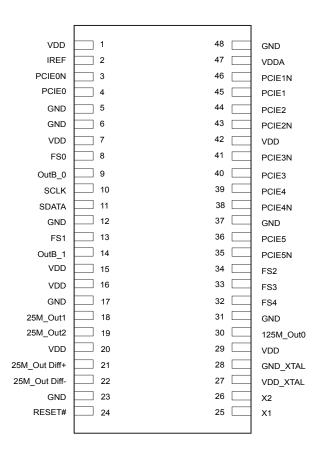
Embedded Clock Generator


Features

- → 3.3V supply voltage
- → 25MHz XTAL or reference clock input
- → Output
 - 6 x PCIe 2.0 100MHz/125MHz clock with spread spectrum support
 - (1+1) x selectable 33/50/66/100/133MHz LVCMOS clock with ±10% frequency margin
 - □ 1 x 125MHz LVCMOS clock
 - 2 x 25MHz LVCMOS clock
 - □ 1 x 25MHz Differential clock (HCSL type)
- → Packaging (Pb free and Green)
 - □ 48-pin TSSOP (A)

Description

The new PI6C49005 is a high performance clock generator intended for all kinds of embedded applications, which include Wireless AP & Femtocell BTS, Multi Function Printer, and other PCIe/Networking applications. It is the most cost effective way to generate a high quality, high frequency clock output from a crystal and reference clock. The device can generate 100/125MHz HCSL outputs for PCIe, selectable 33/50/66/100/133 LVMOS clock for network processor and DSP and 25MHz Ethernet clock combination.


Block Diagram

14-0193 1 www.pericom.com P-0.1 03/27/13

Pin Description

Pin List

Pin#	Pin Name	Pin Type	Pin Description
1	VDD	Power	3.3V Supply Pin
2	IREF	Output	Connect to 475 ohm resistor to set HCSL output drive current
3	PCIE0N	Output	100/125MHz HCSL output
4	PCIE0	Output	100/125MHz HCSL output
5	GND	Power	Ground
6	GND	Power	Ground
7	VDD	Power	3.3V Supply Pin
8	FS0	Input	Frequency select pin for Bank A 100/125MHz PCIe clock output
9	OutB_0	Output	33/50/66MHz selectable LVCMOS output
10	SCLK	Input	I2C compatible clock
11	SDATA	Input	I2C compatible data
12	GND	Power	Ground
13	FS1	Input	Frequency select pin for Bank B 33/50/66/100/133MHz LVCMOS output
14	OutB_1	Output	50/66/100/133MHz selectable LVCMOS output
15	VDD	Power	3.3V Supply Pin

Pin List

Pin#	Pin Name	Pin Type	Pin Description
16	VDD	Power	3.3V Supply Pin
17	GND	Power	Ground
18	25M_Out1	Output	25.MHz LVCMOS output
19	25M_Out2	Output	25MHz LVCMOS output
20	VDD	Power	3.3V Supply Pin
21	25M_Out Diff+	Output	25MHz HCSL output, follow matching circuit in Figure 4
22	25M_Out Diff-	Output	25MHz HCSL output, follow matching circuit in Figure 4
23	GND	Power	Ground
24	RESET#	Input	Power down reset - When low all PLLs are powered down and outputs tristated. SMBus registers are reset to default values
25	X1	Input	Crystal input. Integrated 6pF capacitance
26	X2	Output	Crystal output. Integrated 6pF capacitance
27	VDD_XTAL	Power	3.3V Supply Pin for XTAL
28	GND_XTAL	Power	Ground for XTAL
29	VDD	Power	3.3V Supply Pin
30	125M_Out0	Output	125MHz LVCMOS output
31	GND	Power	Ground
32	FS4	Input	Frequency select pin for Bank C 25/125MHz LVCMOS output
33	FS3	Input	Frequency select pin for Bank B 33/50/66/100/133MHz LVCMOS output
34	FS2	Input	Frequency select pin for Bank B 33/50/66/100/133MHz LVCMOS output
35	PCIE5N	Output	100/125MHz HCSL output
36	PCIE5	Output	100/125MHz HCSL output
37	GND	Power	Ground
38	PCIE4N	Output	100/125MHz HCSL output
39	PCIE4	Output	100/125MHz HCSL output
40	PCIE3	Output	100/125MHz HCSL output
41	PCIE3N	Output	100/125MHz HCSL output
42	VDD	Power	3.3V Supply Pin
43	PCIE2N	Output	100/125MHz HCSL output
44	PCIE2	Output	100/125MHz HCSL output
45	PCIE1	Output	100/125MHz HCSL output
46	PCIE1N	Output	100/125MHz HCSL output
47	VDDA	Power	Analog Power Supply Pin. See Application Circuit in Figure 5
48	GND	Power	Ground
	· · · · · · · · · · · · · · · · · · ·		

Selection Table 1 – 100MHz/125MHz PCIe clock in Selection Table 2 – Spread Spectrum

bank A

FS0	PCIE(0~5)
0	100MHz
1	125MHz

SS1	SS0	SSC
0	0	No spread
0	1	Down -0.75%
1	0	Down -0.5%
1	1	No spread

Selection Table 3 – 33/50/66/100/133MHz LVCMOS clock in bank B

FS1	FS2	FS3	OutB_0	OutB_1
0	0	0	Output disable in hardware control mode, internal pull-down Output = 50MHz in software control mode	Output disable in hardware control mode, internal pull-down Output = 133MHz in software control mode
0	0	1	33M	66M
0	1	0	50M	100M
0	1	1	66M	133M
1	0	0	33M	50M
1	0	1	33M	100M
1	1	0	66M	50M
1	1	1	66M	100M

Selection Table 4 – 25/125MHz LVCMOS/25MHz Diff clock in bank C

FS4	125M_Out0	25M_Out1	25M_Out2	25M_Out Diff
0	Output disable, internal pull-down	25MHz	25MHz	Output disable
1	125MHz	25MHz	25MHz	Output disable
NC	Output disable, internal pull-down	Output disable, internal pull-down	Output disable, internal pull-down	25MHz Diff

OutB_1 Frequency Margining Table

FM3	FM2	FM1	FM0	OutB_1
0	0	0	0	nominal
0	0	0	1	nominal + 1%
0	0	1	0	nominal + 2%
0	0	1	1	nominal + 3%
0	1	0	0	nominal + 4%
0	1	0	1	nominal + 5%
0	1	1	0	nominal + 6%
0	1	1	1	nominal + 8%
1	0	0	0	nominal + 10%
1	0	0	1	nominal - 1%
1	0	1	0	nominal - 2%
1	0	1	1	nominal - 3%
1	1	0	0	nominal - 4%
1	1	0	1	nominal - 6%
1	1	1	0	nominal - 8%
1	1	1	1	nominal - 10%

Serial Data Interface (SMBus)

This part is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	0	0	1	0/1

How to Write

1 bit	8 bits	1	8 bits	1	8 bits	1	8 bits	1		8 bits	1	1 bit
Start bit	D2H	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	•••	Data Byte N - 1	Ack	Stop bit

Note

How to Read (M: abbreviation for Master or Controller; S: abbreviation for slave/clock)

1 bit	8 bits	1 bit	8 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	 8 bits	1 bit	1 bit
M: Start bit	M: Send "D2h"	S: sends Ack	M: send starting databyte location: N	S: sends Ack	M: Start bit	M: Send "D3h"	S: sends Ack	S: sends # of data bytes that will be sent: X	M: sends Ack	S: sends start- ing data byte N	M: sends Ack	 S: sends data byte N+X- 1	M: Not Ac- knowl- edge	M: Stop bit

Byte 0: Spread Spectrum Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	Reserved				
6	Enables hardware or software control of OE bits (see Byte 0–Bit 6 and Bit 5 Functionality table)	RW	0	RESET# pin, bit 5	0 = hardware cntl 1 = software ctrl
5	Software RESET# bit. Enables or disables all outputs (see Byte 0–Bit 6 and Bit 5 Functionality table)	RW	1	All outputs	0 = disabled 1 = enabled
4	Frequency margining select bit FM3	RW	1		
3	Frequency margining select bit FM2	RW	0		See OutB_1 Frequen-
2	Frequency margining select bit FM1	RW	1	OutB_1	cy Margining Table
1	Frequency margining select bit FM0	RW	0		on Page 5
0	OE for single-ended OutB_1	RW	1	Single-ended OutB_1	0 = disabled 1 = enabled

^{1.} Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

Byte 0 - Bit 6 and Bit 5 Functionality

Bit 6	Bit 5	Description
0	X	(RESET# = "H" will enable all outputs; SMBus cannot control each output.)
1	0	Disables all outputs and tri-states the outputs, RESET# HW pin/signal = DO NOT CARE
1	1	Enable outputs according to the SMBus default values; SMBus can control each output. RESET# HW pin/signal, FS1,FS2,FS3,FS4 = DON'T CARE

Byte 1: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	OE for 25M_Out Diff	RW	1	25M_Out Diff	0 = disabled 1 = enabled
6	OE for 25M_Out2	RW	1	25M_Out2	0 = disabled 1 = enabled
5	OE for 25M_Out1	RW	1	25M_Out1	0 = disabled 1 = enabled
4	OE for 125_Out0	RW	1	125_Out0	0 = disabled 1 = enabled
3	OE for OutB_0	RW	1	OutB_0	0 = disabled 1 = enabled
2	Reserved	RW	Undefined	Not Applicable	
1	Spread Spectrum Selection for	RW	0	All 100MH, HOGE BOL	See Selection Table
0	100MHz HCSL PCI Express clocks Bit 1: SS1, Bit 0:SS0		0	All 100MHz HCSL PCI Express outputs	2 - Spread Spectrum

Byte 2: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7 to 0	Reserved	R	Undefined	Not Applicable	

Byte 3: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	Reserved	RW	Undefined	Not Applicable	
6	OE for 100M_Out5 HCSL Output	RW	1	100M_Out5	0 = disabled 1 = enabled
5	OE for 100M_Out4 HCSL Output	RW	1	100M_Out4	0 = disabled 1 = enabled
4	OE for 100M_Out3 HCSL Output	RW	1	100M_Out3	0 = disabled 1 = enabled
3	OE for 100M_Out2 HCSL Output	RW	1	100M_Out2	0 = disabled 1 = enabled
2	OE for 100M_Out1 HCSL Output	RW	1	100M_Out1	0 = disabled 1 = enabled
1	OE for 100M_Out0 HCSL Output	RW	1	100M_Out0	0 = disabled 1 = enabled
0	Reserved	R	Undefined	Not Applicable	

Byte 4 & 5: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7 to 0	Reserved	R	Undefined	Not Applicable	

Byte 6: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	Revivsion ID bit 3	R	0	Not Applicable	
6	Revivsion ID bit 2	R	0	Not Applicable	
5	Revivsion ID bit 1	R	0	Not Applicable	
4	Revivsion ID bit 0	R	0	Not Applicable	
3	Vendor ID bit 3	R	0	Not Applicable	
2	Vendor ID bit 2	R	0	Not Applicable	
1	Vendor ID bit 1	R	1	Not Applicable	
0	Vendor ID bit 0	R	1	Not Applicable	

Recommanded Operation Conditions (Over operating free-air temperature range)

Symbol	Parameters	Min.	Max.	Units
$V_{_{ m DD}}$	3.3V I/O Supply Voltage	-0.5	4.6	
$V_{_{ m IH}}$	Input High Voltage		4.6	V
$V_{_{ m IL}}$	Input Low Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
$ m V_{ESD}$	ESD Protection	2000		V

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Maximum Supply Voltage, V _{DD}	7V
All Inputs and Outputs	-0.5 V to $V_{DD} + 0.5$ V
Ambient Operating Temperature	
Storage Temperature	65°C to +150°C
Junction Temperature	125°C
Peak Soldering Temperature	260°C

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics

Unless otherwise specified, V_{DD} =3.3V±5%, Ambient Temperature –40°C to +85°C

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Operating Supply Voltage	V _{DD}		3.135		3.465	
Analog Supply Vlotage	V_{DDA}		3.135		3.465	
Input High Voltage	$V_{_{ m IH}}$		2		$V_{_{ m DD}}$	V
Input Low Voltage	$V_{_{ m IL}}$		-0.3		0.8	
Input High Voltage	$V_{_{ m IH}}$	SDATA, SCLK, FS4	$0.7V_{DD}$		$V_{_{ m DD}}$	
Input Low Voltage	$V_{_{ m IL}}$	SDATA, SCLK, FS4			$0.3V_{DD}$	
Operating Supply Current	I_{DD}			220	255	4
IDD at Output Disable Condition		RESET# = 0		4.3		mA
Internal Pull-Up/Pull-	R_{PU}/R_{PD}	RESET#		216		k–Ohm
Down Resistor	10 10	All single-ended outputs		75		
Input Capacitance	C _{IN}	All input pins		6		pF
Pin FS4 External Pull- Up/Pull-Down Resistor	R _{FS4Ext}				470	Ohm

Electrical Characteristics - Single-Ended Unless otherwise specified, $V_{\rm DD}$ =3.3V±5%, Ambient Temperature -40°C to +85°C

Parameter	Symbol	Conditions	Min	Тур	Max	Units	
Input Clock Frequency	F_{IN}			25		MHz	
SCLK Frequency				100	400	kHz	
Minimum Pulse Width of RESET# Input			100			ns	
Output Frequency Error		FM0, FM3 = 0		0		ppm	
Output Rise/Fall Time	t_{r, t_f}	20% to 80%		1	2	ns	
Output Clock Duty Cycle		Measured at V _{DD} /2	45	50	57	%	
High-Level Output Voltage	V _{OH}	$I_{OH} = -4mA$	VDD-0.4				
High-Level Output Voltage	V _{OH}	$I_{OH} = -8mA$	2.4			V	
Low-Level Output Voltage	V _{OL}	$I_{OL} = 8mA$			0.4	v	
		125MHz clock output		140	200		
Peak-to-Peak Jitter		33/50/66/100/133MHz clock output		125	175		
		25MHz clock output		115	150		
		125MHz clock output		120	175	ps	
Cycle-to-Cycle Jitter		33/50/66/100/133MHz clock output		120	160		
		25MHz clock output		120	160		
Clock Stabilization Time from Power Up			3		10	ms	

Electrical Characteristics - 100MHz Differential HCSL Outputs

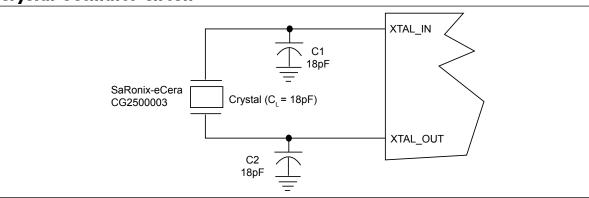
Unless otherwise specified, V_{DD} =3.3V±5%, Ambient Temperature –40°C to +85°C

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Output Frequency					100	MHz
Cycle-to-Cycle Jitter	T _{CC/Jitter}				150	
Peak-to-Peak Phase Jitter		Using PCIe jitter measure- ment method			86	ps
PCIe 2.0 RMS Phase Jitter	$\mathbf{J}_{\mathrm{RMS2.0}}$	PCIe 2.0 Test Method @ 100MHz Output			3.1	ps
Spread Modulation Percentage				-0.5	0	%
Spread Modulation Frequency				32		kHz
Duty Cycle	T_{DC}		45	50	55	%
SE Rise/Fall Time Measured from 0.175V to 0.525V	T_{or}, T_{of}	1. R _L =50-Ohm with C _L = 2pF 2. Single-ended waveform	175		700	ps
Output Skew	T _{OSKEW}	$V_T = 50\%$ (measurement threshold)			200	ps
High-Level Output Voltage	V _{OH}	Note 2, (R _s =33-Ohm, R _T =50-Ohm)	0.65	0.71	0.95	
Low-Level Output Voltage	V _{OL}		-0.20	0	0.05	V
I _{OH} @ 6*I _{REF}	I _{OH}		-13	-14.2	-19	mA
Absolute Crossing Point Voltage	V _{CROSS}	Note 2, 5, 6	0.25		0.55	V
Variation of VCROSS over all rising clock edges	V _{CROSS Delta}	Note 2, 5, 8			140	mV
Average Clock Period Accuracy	T _{PERIOD AVG}	Note 3, 9, 10	-300		2800	ppm
Absolute Period (including jitter and spread spectrum)	$T_{PERIOD ABS}$	Note 3, 7	9.847		10.203	ns

Notes:

- 1. Measured at the end of an 8-inch trace with a 5pF load.
- 2. Measurement taken from a single-ended waveform.
- 3. Measurement taken from a differential waveform.
- 4. Measured from -150 mV to +150 mV on the differential waveform. The signal is monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.
- 5. Measured at crossing point where the instantaneous voltage value of the rising edge of 100M+ equals the falling edge 100M-.
- 6. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
- 7. Defines as the absolute minimum or maximum instantaneous period. This includes cycle-to-cycle jitter, relative PPM tolerance, and spread spectrum modulation.
- 8. Defined as the total variation of all crossing voltages of rising 100M+ and falling 100M-.
- 9. Refer to section 4.3.2.1 of the PCI Express Base Specification, Revision 1.1 for information regarding PPM considerations.
- 10. 10) PPM refers to parts per million and is a DC absolute period accuracy specification. 1 PPM is 1/1,000,000th of 100 MHz exactly or 100 Hz. For 300 PPM there is an error budget of 100Hz/PPM * 300 PPM = 30 kHz. The period is measured with a frequency counter with measurement window set at 100 ms or greater. With spread spectrum turned off the error is less than ±300 ppm. With spread spectrum turned on there is an additional +2500 PPM nominal shift in maximum period resulting from the -0.5% down spread.

14-0193 12 www.pericom.com P-0.1 03/27/13



Application Notes

Crystal circuit connection

The following diagram shows PI6C49005 crystal circuit connection with a parallel crystal. For the CL=18pF crystal, it is suggested to use C1= 18pF, C2= 18pF. C1 and C2 can be adjusted to fine tune to the target ppm of crystal oscillator according to different board layouts.

Crystal Oscillator Circuit

Recommended Crystal Specification

Pericom recommends:

- a) GC2500003 XTAL 49S/SMD(4.0 mm), 25M, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/GC GF.pdf
- b) FY2500081, SMD 5x3.2(4P), 25M, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf
- c) FL2500047, SMD 3.2x2.5(4P), 25M, CL=18pF, +/-20ppm, http://www.pericom.com/pdf/datasheets/se/FL.pdf

14-0193 13 www.pericom.com P-0.1 03/27/13

Configuration test load board termination for HCSL Outputs

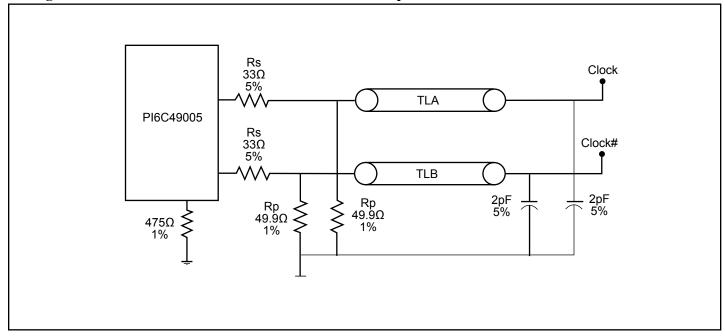


Figure 4. Configuration Test Load Board Termination

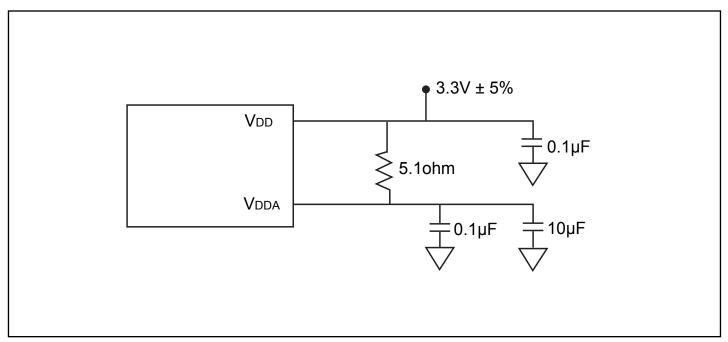
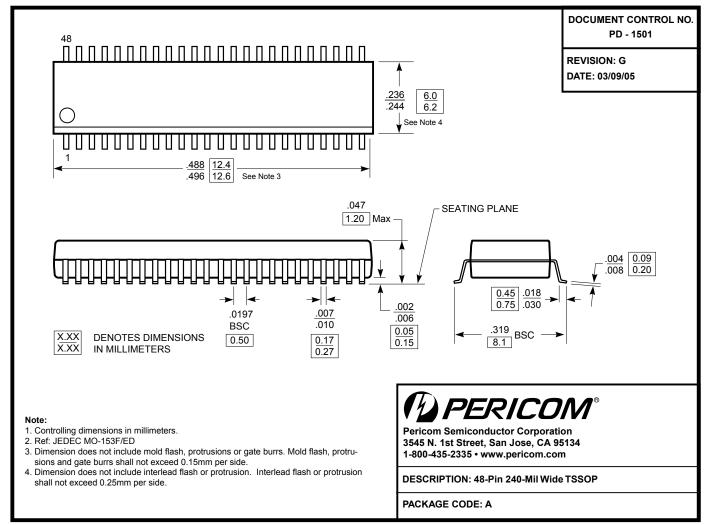



Figure 5. Power Supply Filter

Note:

· For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information(1-3)

Ordering Code	Package Code	Package Description
PI6C49005AIE	A	48-pin, Pb-free & Green, TSSOP, (A48)

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com