

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

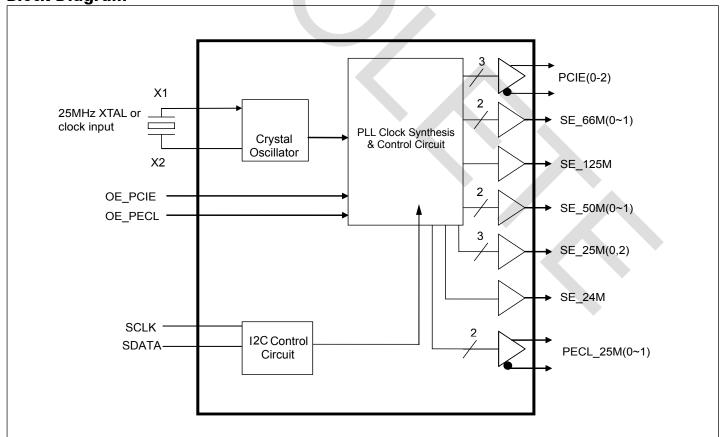
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

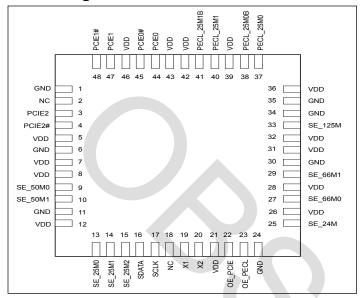
Low Power High Integration Clock Generator


Features

- → 3.3V supply voltage
- → 25MHz XTAL or reference clock input
- → Output
 - 3 x low power PCIe 2.0 100MHz clock with integrate series termination resistor
 - 2 x 66.667MHz LVCMOS clock for CPU
 - □ 1 x 125MHz LVCMOS clock for Gigabit Ethernet
 - 2 x 50MHz LVCMOS clock for CPLD
 - 3 x 25MHz LVCMOS clock for Ethernet PHY
 - 2 x 25MHz low jitter LVPECL Ethernet clock
 - □ 1 x 24MHz LVCMOS for USB PHY
- → Packaging (Pb free and Green)
 - 48-pin TQFN

Description

The new PI6C49021B is a high integration clock generator intended for all kinds of embedded applications and networking application with PCIe interface. The device is the most cost effective way to generate multi-frequencies and multi-outputs clocks from a 25MHz crystal and reference clock. The device can generate 100MHz HCSL clock, single-ended clocks includes 24MHz, 25MHz, 50HMz, 125HMz, and low jitter 25MHz LVPECL clock.


Block Diagram

1

Pin Configuration

Pins	Group Description
5	Power for 66.667MHz PLL
7	Power for 24MHz PLL
31	Power for 125M/50MHz PLL
36	Power for 100MHz PCIe PLL
8	Power for 50MHz outputs
12	Power for 25MHz LVCMOS outputs
21	Power for crystal oscillator
26	Power for 24MHz output
28	Power for 66.667MHz outputs
32	Power for 125MHz output
39, 42	Power for 25MHz differential outputs
43, 46	Power for PCIe clock outputs

Pin Description

Pin#	Pin Name	Type	Description
1, 6, 11, 24, 30, 34, 35	GND	Power	Ground
2	NC		Do not Connect
3	PCIE2	Output	100MHz HCSL output
4	PCIE2#	Output	100MHz HCSL output
5, 7, 8, 12, 21, 26, 28, 31, 32, 36, 39, 42, 43, 46	VDD	Power	Power supply
9	SE_50M0	Output	50MHz LVCMOS output
10	SE_50M1	Output	50MHz LVCMOS output
13	SE_25M0	Output	25MHz LVCMOS output
14	SE_25M1	Output	25MHz LVCMOS output
15	SE_25M2	Output	25MHz LVCMOS output
16	SDATA	I/O	I2C compatible data
17	SCLK	Input	I2C compatible clock
18	NC		Do not Connect (can be used as RESET# pin, global reset input powers down PLLs plus tri-states outputs and sets the I2C tables to their default state when pulled low.)
10	V1	Innut	Crystal input. Connect to 25MHz
19	X1	Input	Fundamental mode crystal or clock.
20	X2	Output	Crystal output. Connect to 25MHz
20	ΛΔ	Output	Fundamental mode crystal. Float for clock input.
22	OE_PCIE	Input	100MHz HCSL PCIE2 enable pin. Set High to enable.

Pin#	Pin Name	Туре	Description
23	OE_PECL	Input	25MHz LVPECL PECL 25M1 enable pin. Set High to enable.
25	SE_24M	Output	24MHz LVCMOS output
27	SE_66M0	Output	66.667MHz LVCMOS output
29	SE_66M1	Output	66.667MHz LVCMOS output
33	SE_125M	Output	125MHz LVCMOS output
37	PECL_25M0	Output	25MHz differential output
38	PECL_25M0#	Output	25MHz differential output
40	PECL_25M1	Output	25MHz differential output
41	PECL_25M1#	Output	25MHz differential output
44	PCIE0	Output	100MHz HCSL output
45	PCIE0#	Output	100MHz HCSL output
47	PCIE1	Output	100MHz HCSL output
48	PCIE1#	Output	100MHz HCSL output

Notes: VDD and GND Pins Layout Guide

Selection Table - PCIE2 / PECL_25M1 Output Control

OE_PCIE	PCIE2 Status	
1	Enable PCIE2 output (Default)	
0	Disable PCIE2 output, Tristate	
OE_PECL	PECL_25M1 Status	
1	Enable PECL_25M1 output (Default)	
0	Disable PECL_25M1 output, Tristate	

^{1.} Small value decoupling caps. (0.1uF, 1uF, and 2.2uF) should be placed close each VDD pin or its via

^{2.} Connect all GND pins to package thermal pad which must be connected to the GND plane for better thermal distribution and signal conducting with reasonable via count (>8)

Serial Data Interface (SMBus)

This part is a slave only device that supports block read and block write protocol using a single 7-bit address and read/write bit as shown below.

Read and write block transfers can be stopped after any complete byte teansfer by issuing STOP.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	0	0	1	0/1

How to Write

1 bit	8 bits	1	8 bits	1	8 bits	1	8 bits	1		8 bits	1	1 bit
Start bit	D2H	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	•••	Data Byte N - 1	Ack	Stop bit

How to Read (M: abbreviation for Master or Controller; S: abbreviation for slave/clock)

1 bit	8 bits	1 bit	8 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	 8 bits	1 bit	1 bit
M: Start bit	M: Send "D2h"	S: sends Ack	M: send starting databyte location: N	S: sends Ack	M: Start bit	M: Send "D3h"	S: sends Ack	S: sends # of data bytes that will be sent: X	M: sends Ack	S: sends start- ing data byte N	M: sends Ack	 S: sends data byte N+X- 1	M: Not Ac- knowl- edge	M: Stop bit

Byte 0: Spread Spectrum Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	OE for SE_66M0	RW	1	SE_66M0 output	0 = disabled 1 = enabled
6	Enable hardware or software control of OE bits (see Byte 0-Bit 6 and Bit 5 Functionality table)	RW	0	All outputs	0 = hardware cntl 1 = software ctrl
5	Software RESET# bit. Enablea or disables all outputs. (see Byte 0-Bit 6 and Bit 5 Functionality table)	RW	1	All outputs	0 = disabled 1 = enabled
4	Reserved	R	Undefined		
3	Reserved	R	Undefined		
2	Reserved	R	Undefined	Not applicable	
1	Reserved	R	Undefined		
0	OE for SE_66M1	RW	1	SE_66M1 output	0 = disabled 1 = enabled

^{1.}Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

Byte 0: Bit 6 and Bit 5 Functionality

Bit	Bit 5	Description
0	X	RESET# = "H" will enable all outputs; SMBus can not control each output.
1	0	Disable all outputs and tri-states the outputs. When pin 18 (RESET#) is set low, force device to power-on reset and set all registers to default values.
1	1	Enable outputs according to the SMBus default values; SMBus can control each output. When pin 18 (RE-SET#) is set low, force to power-on reset and set all registers to default values.

Byte 1: Control Register

Bit	Description	Type	Power Up Condition	Output(s) Affected	Notes
7	OE for SE_125M	RW	1	SE_125M	0 = disabled 1 = enabled
6	OE for SE_50M0	RW	1	SE_50M0	0 = disabled 1 = enabled
5	OE for SE_50M1	RW	1	SE_50M1	0 = disabled 1 = enabled
4	OE for SE_25M0	RW	1	SE_25M0	0 = disabled 1 = enabled
3	OE for SE_25M1	RW	1	SE_25M1	0 = disabled 1 = enabled
2	OE for SE_24M	RW	1	SE_24M	0 = disabled 1 = enabled
1, 0	Reserved		Undefined	Not Applicable	

Byte 2: Control Register

Bit	Description	Type	Power Up Condition	Output(s) Affected	Notes
7 to 0	Reserved	R	Undefined	Not Applicable	

Byte 3: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	Reserved	RW	Undefined	Not Applicable	
6	OE for PECL_25M0	RW	1	PECL_25M0	0 = disabled 1 = enabled
5	OE for PECL_25M1	RW	1	PECL_25M1	0 = disabled 1 = enabled
4	OE for SE_25M2	RW	1	SE_25M2	0 = disabled 1 = enabled
3	OE for PCIE2	RW	1	PCIE2	0 = disabled 1 = enabled
2	OE for PCIE1	RW	1	PCIE1	0 = disabled 1 = enabled
1	OE for PCIE0	RW	1	PCIE0	0 = disabled 1 = enabled
0	Reserved	R	Undefined	Not Applicable	

Byte 4 & 5: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7 to 0	Reserved	R	Undefined	Not Applicable	

Byte 6: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	Revivsion ID bit 3	R	0	Not Applicable	
6	Revivsion ID bit 2	R	0	Not Applicable	
5	Revivsion ID bit 1	R	0	Not Applicable	
4	Revivsion ID bit 0	R	1	Not Applicable	
3	Vendor ID bit 3	R	0	Not Applicable	
2	Vendor ID bit 2	R	0	Not Applicable	
1	Vendor ID bit 1	R	1	Not Applicable	
0	Vendor ID bit 0	R	1	Not Applicable	

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Supply Voltage to Ground Potential4				
All inputs and Output	0.5V to $V_{\rm DD}$ +0.5V			
Ambient Operating Temperature	-40°C to +85°C			
Storage Temperature	65°C to +150°C			
Juction Temperature	125°C			
Soldering Temperature	260°C			
ESD Protection (Input)	2000V (HBM)			

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics

Unless otherwise specified, V_{DD} =3.3V±5%, Ambient Temperature -40°C to +85°C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
$V_{_{ m DD}}$	Operating Supply Voltage		3.135		3.465	
$V_{_{ m IH}}$	Input High Voltage		2		V _{DD} +0.3	
V _{IL}	Input Low Voltage		-0.3		0.8	V
V _{IH}	Input High Voltage	SCLK,SDATA	$0.7V_{DD}$		$V_{_{ m DD}}$	
V _{IL}	Input Low Voltage	SCLK,SDATA			$0.3V_{DD}$	
I _{DD}	Operating Supply Current			197	230	mA
C _{IN}	Input Capacitance	All input pins		6		pF

Electrical Characteristics - Single-Ended

Unless otherwise specified, V_{DD} =3.3V±5%, Ambient Temperature -40°C to +85°C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
F _{IN}	Input Clock Frequency			25		MHz
F _T	Frequency Stability	25MHz XTAL			±50	ppm
Ferror	Frequency Synthesis Error	24MHz, 25MHz, 50MHz, 66.667MHz, 125MHz output			0	ppm
	SCLK Frequency			100	400	kHz
$t_{r, t_{f}}$	Output Rise/Fall Time	20% to 80% 24MHz, 25MHz, 50MHz, 66.667MHz output		1	1.5	ns
r, r		0.6V to 2.7V 125MHz output			1.2	ns
	Output Clock Duty Cycle	$\begin{array}{c} \mbox{Measured at V}_{\mbox{\tiny DD}}/2 \\ 24\mbox{MHz, 25MHz, 50MHz, 66.667MHz} \\ \mbox{output} \end{array}$	45	50	55	%
		Measured at $V_{DD}/2$, 125MHz	47	50	53	
V _{OH}	High-Level Output Voltage	$I_{OH} = -4mA$	VDD-0.4			
V _{OH}	High-Level Output Voltage	$I_{OH} = -8mA$	2.4			V
V _{OL}	Low-Level Output Voltage	$I_{OL} = 8mA$			0.4 V	

Symbol	Parameter	Conditions		Тур	Max	Units
	RMS phase jitter	25MHz clock output, Fj=1kHz to 5MHz offset frequency			3	ps
	Peak-to-Peak Jitter	125MHz clock output			±150	
		66.667MHz clock output			±150	ps
		50MHz clock output			250	
	Clock Stabilization Time from Power Up		3		6	ms

Electrical Characteristics - 100MHz Differential HCSL Outputs

Unless otherwise specified, $V_{pp}=3.3V\pm5\%$, Ambient Temperature -40°C to +85°C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Output Frequency				100	MHz
T _{CC/Jitter}	Cycle-to-Cycle Jitter				150	
	Peak-to-Peak Phase Jitter	Using PCIe jitter measurement method			86	ps
J _{RMS2.0}	PCIe 2.0 RMS Phase Jitter	PCIe 2.0 Test Method @ 100MHz Output			3.1	ps
$J_{ m RMS}$	RMS Phase Noise Jitter	Phase Noise Jitter Test Method @ 12kHz~20MHz		10		ps
T_{DC}	Duty Cycle		45	50	55	%
	Rising Edge Rate ^{3,4}		0.6		4.0	V/ns
	Falling Edge Rate ^{3,4}		0.6		4.0	V/ns
T _{OSKEW}	Output Skew	$V_T = 50\%$ (measurement threshold)			75	ps
V _{OH}	High-Level Output Voltage ²	R _s =33-Ohm	0.65	0.71	0.85	
V _{OL}	Low-Level Output Voltage		-0.20	0	0.05	V
V _{CROSS}	Absolute Crossing Point Voltage ^{2,5,6}		0.25		0.55	V
V _{CROSS Delta}	Variation of VCROSS over all rising clock edges ^{2,5,8}				140	mV
T _{PERIOD AVG}	Average Clock Period Accuracy ^{3,9,10}		-300		2800	ppm
T _{PERIOD ABS}	Absolute Period (including jitter and spread spectrum) ^{3,7}		9.847		10.203	ns

Notes:

- 1. Measured at the end of an 8-inch trace with a 5pF load.
- 2. Measurement taken from a single-ended waveform.
- 3. Measurement taken from a differential waveform.
- 4. Measured from -150 mV to +150 mV on the differential waveform. The signal is monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.
- 5. Measured at crossing point where the instantaneous voltage value of the rising edge of 100M+ equals the falling edge 100M-.
- Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
- 7. Defines as the absolute minimum or maximum instantaneous period. This includes cycle-to-cycle jitter, relative PPM tolerance,

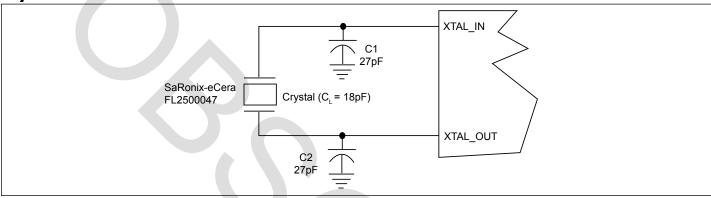
and spread spectrum modulation.

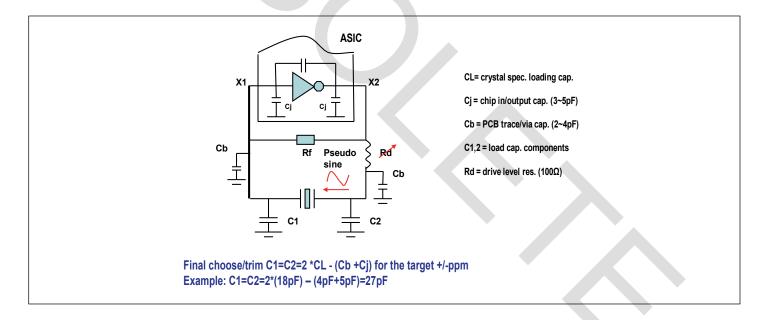
- 8. Defined as the total variation of all crossing voltages of rising 100M+ and falling 100M-.
- 9. Refer to section 4.3.2.1 of the PCI Express Base Specification, Revision 1.1 for information regarding PPM considerations.

10. PPM refers to parts per million and is a DC absolute period accuracy specification. 1 PPM is 1/1,000,000th of 100 MHz exactly or 100 Hz. For 300 PPM there is an error budget of 100Hz/PPM * 300 PPM = 30 kHz. The period is measured with a frequency counter with measurement window set at 100 ms or greater. With spread spectrum turned off the error is less than ± 300 ppm. With spread spectrum turned on there is an additional ± 2500 PPM nominal shift in maximum period resulting from the $\pm 0.5\%$ down spread.

Electrical Characteristics - 25MHz LVPECL outputs

Symbol	Parameter	Min	Тур	Max	Unit
T _{PERIOD}	Cycle Time	-	40	-	ns
T_{DC}	Duty Cycle	45	-	55	%
$t_{r,} t_{f}$	Rise/Fall Time (20%-80%)	0.3	-	0.6	ns
J _{RMS}	RMS Jitter (12kHz-5 MHz)	-	-	2 (spur off)	ps-RMS
	Clock Tolerance (25MHz)	-50	-	+50	ppm
V_{OH}	Output High Voltage	V _{DD} -1.4		V _{DD} -0.9	
V _{OL}	Output Low Voltage	V _{DD} -2.0		V _{DD} -1.7	V
V _{swing}	Peak to Peak Output Voltage Swing	0.6		1.0	




Application Notes

Crystal circuit connection

The following diagram shows PI6C49021B crystal circuit connection with a parallel crystal. For the CL=18pF crystal, it is suggested to use C1= 27pF, C2= 27pF. C1 and C2 can be adjusted to fine tune to the target ppm of crystal oscillator according to different board layouts.

Crystal Oscillator Circuit

Recommended Crystal Specification

Pericom recommends:

- a) GC2500003 XTAL 49S/SMD(4.0 mm), 25M, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/GC_GF.pdf
- b) FY2500081, SMD 5x3.2(4P), 25M, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/FY F9.pdf
- c) FL2500047, SMD 3.2x2.5(4P), 25M, CL=18pF, +/-20ppm, http://www.pericom.com/pdf/datasheets/se/FL.pdf

Configuration test load board termination for HCSL Outputs

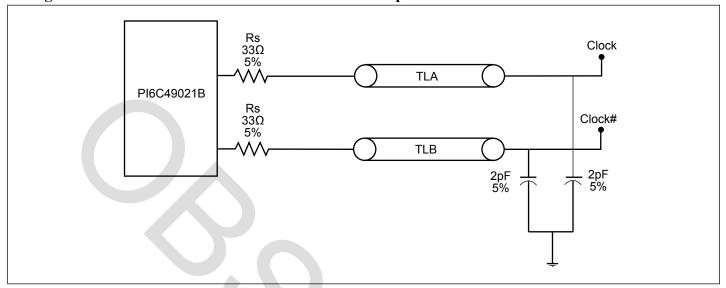


Figure 4. Configuration Test Load Board Termination

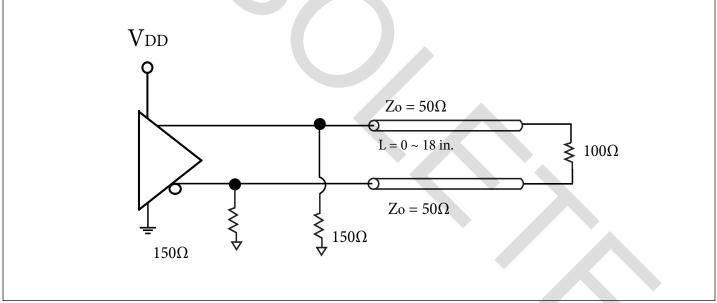
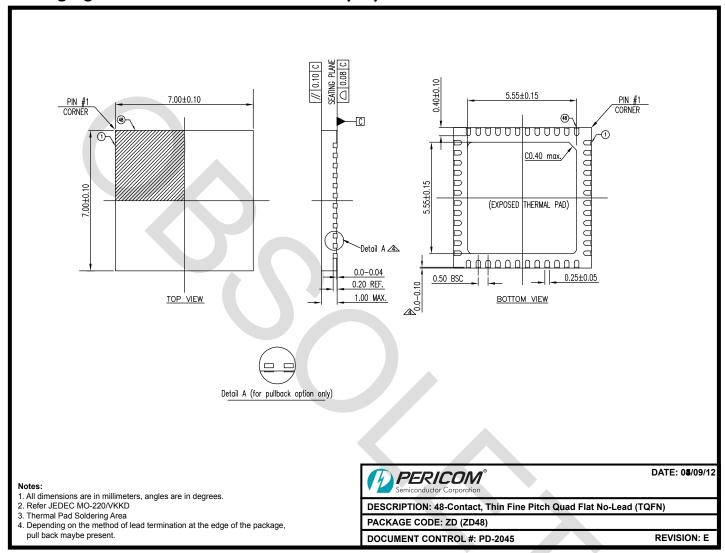



Figure 5. LVPECL output termination

Packaging Mechanical: 48-Contact TQFN (ZD)

12-0458

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information(1-3)

Ordering Code	Package Code	Package Description
PI6C49021BZDIE	ZD	48-contact, Thin Fine Pitch Quad Flat No-Lead (TQFN)

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com