: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Performance 1:5 LVPECL Fanout Buffer

Features

$\rightarrow 5$ LVPECL outputs
\rightarrow Up to 1.5 GHz output frequency
\rightarrow Ultra low additive phase jitter: $<0.03 \mathrm{ps}$ (typ) (differential $156.25 \mathrm{MHz}, 12 \mathrm{KHz}$ to 20 MHz integration range)
\rightarrow Two selectable inputs
\rightarrow Low delay from input to output (Tpd typ. 1.5ns)
$\rightarrow 3.3 \mathrm{~V}$ power supply
\rightarrow Industrial temperature support
\rightarrow TSSOP-20 package

Description

The PI6C4911505 is a high performance fanout buffer devicewhich supports up to 1.5 GHz frequency. The device has 2 selectable clock inputs that can accept most differential clock sources. This device is ideal for systems that need to distribute low jitter clock signals to multiple destinations.

Applications

\rightarrow Networking systems including switches and Routers
\rightarrow High frequency backplane based computing and telecom platforms

Block Diagram

Pin Configuration (20-Pin TSSOP)

Pinout Table

Pin \#	Pin Name	Type		Description
1,2	$\begin{aligned} & \text { Q0 } \\ & \text { nQ0 } \end{aligned}$	Output		LVPECL output clock
3, 4	$\begin{aligned} & \text { Q1 } \\ & \text { nQ1 } \end{aligned}$	Output		LVPECL output clock
5,6	$\begin{aligned} & \text { Q2 } \\ & \text { nQ2 } \end{aligned}$	Output		LVPECL output clock
7, 8	$\begin{aligned} & \text { Q3 } \\ & \text { nQ3 } \end{aligned}$	Output		LVPECL output clock
9, 10	$\begin{aligned} & \text { Q4 } \\ & \text { nQ4 } \end{aligned}$	Output		LVPECL output clock
11, 18, 20	V_{DD}	Power		Power supply
12	CLK_SEL	Input	Pulldown	Clock input source selection pin
13, 14	$\begin{aligned} & \text { CLK0 } \\ & \text { nCLK0 } \end{aligned}$	Input	Pulldown Pullup	Differential clock input
15	$\mathrm{V}_{\text {EE }}$	Power		Negative power supply
16, 17	$\begin{aligned} & \text { CLK1 } \\ & \text { nCLK1 } \end{aligned}$	Input	Pulldown Pullup	Differential clock input
19	CLK_EN	Input	Pullup	Clock output enable/ disable

Function Table
Table 1: Input select function

CLK_SEL	Function
0	CLK0, nCLK0
1	CLK1, nCLK1

Table 2: Output Mode select function

CLK_EN	Outputs	
	Q0:Q4	nQ0:nQ44
0	Disabled; LOW	Disabled; HIGH
1	Enabled	Enabled

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested)

Storage temperature.. -55 to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\left(\mathrm{V}_{\mathrm{DD}}\right)$).................... -0.5 to +4.6 V
Inputs (Referenced to GND) -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Clock Output (Referenced to GND)................ -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Soldering Temperature (Max of 10 seconds) $+260^{\circ} \mathrm{C}$
Latch up... 200 mA

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Power Supply Characteristics and Operating Conditions

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
I_{DD}	Power Supply Current	All outputs unloaded			160	mA
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature		-40		85	${ }^{\circ} \mathrm{C}$

DC Electrical Specifications - Differential Inputs

Symbol	Parameter		Min.	Typ.	Max.	Units
I_{IH}	Input High current: CLK0, CLK1	Input $=\mathrm{V}_{\mathrm{DD}}$			200	uA
	Input High current: nCLK0, nCLK1	Input $=\mathrm{V}_{\mathrm{DD}}$			10	uA
$\mathrm{I}_{\text {IL }}$	Input Low current: CLK0, CLK1	Input = GND	-200			uA
	Input Low current: nCLK0, nCLK1	Input $=$ GND	-200			uA
$\mathrm{C}_{\text {IN }}$	Input capacitance			4		pF
$\mathrm{V}_{\text {ID }}$	Input Differential Amplitude PK-PK		0.15		$\mathrm{V}_{\mathrm{DD}}-0.85$	V
$\mathrm{V}_{\text {CM }}$	Common model input voltage		GND + 0.5		VDD-0.85	V

DC Electrical Specifications - LVCMOS Inputs

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
I_{IH}	Input High current	Input = V_{DD}			200	uA
I_{IL}	Input Low current	Input = GND	-200		uA	
V_{IH}	Input high voltage	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	2.0		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input low voltage	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	-0.3		0.8	V

DC Electrical Specifications- LVPECL Outputs

Parameter	Description	Conditions	Min.	Typ.	Max.	Units
V_{OH}	Output High voltage	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	2.1		2.6	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low voltage	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	1.3		1.8	V

AC Electrical Specifications

Parameter	Description	Conditions	Min.	Typ.	Max.	Units
FOUT	Clock output frequency	LVPECL			1500	MHz
T_{r}	Output rise time	From 20\% to 80%		150		ps
T_{f}	Output fall time	From 80\% to 20\%		150		ps
$\mathrm{T}_{\mathrm{ODC}}$	Output duty cycle	Frequency<650MHz	48		52	$\%$
$\mathrm{~V}_{\mathrm{PP}}$	Output swing Single-ended	LVPECL outputs	400			mV
T_{j}	Buffer additive jitter RMS		(outputs devices, outputs in same bank, with same load, at DUT.	0.03		ps
T_{SK}	Output Skew	Propagation Delay	40	ps		
T_{PD}			1500		ps	

Configuration Test Load Board Termination for LVPECL

Application Information

Wiring the differential input to accept single ended levels
Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $\mathrm{V}_{-} R E F=\mathrm{V}_{\mathrm{DD}} / 2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to postion the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5 V and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V} _$REF should be 1.25 V and $\mathrm{R} 1 / \mathrm{R} 2=0.609$.

Figure 1. Single-ended input to Differential input device

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

SYMBOLS	MIN.	NOM.	MAX.
A	-	-	1.20
A1	0.05	-	0.15
A2	0.80	-	1.05
b	0.19	-	0.30
C	0.09	-	0.20
D	6.40	6.50	6.60
E1	4.30	4.40	4.50
E	6.40 BSC		
e	0.65 BSC		
L1	1.00 REF		
L	0.45	0.60	0.75
S	0.20	-	-
θ	0°	-	8°

lotes:
Refer JEDEC MO-153F/AC
Controlling dimensions in millimeters
. Package outline exclusive of mold flash and metal burr

DATE: 05/03/12

DESCRIPTION: 20-pin, 173mil Wide TSSOP
PACKAGE CODE: L
DOCUMENT CONTROL \#: PD-1311 REVISION: F

Ordering Information ${ }^{(1-3)}$

Ordering Code	Package Code	Package Description
PI6C4911505LIE	L	20-pin, TSSOP, Pb-Free and Green

Notes:

1. 1Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. $\mathrm{E}=\mathrm{Pb}$-free and Green
3. Adding an X suffix $=$ Tape/Reel
