

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

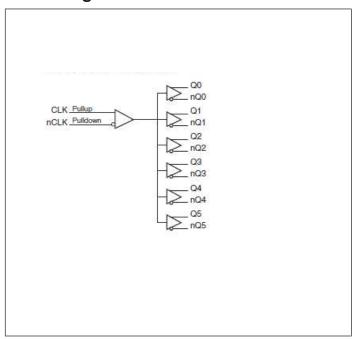
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

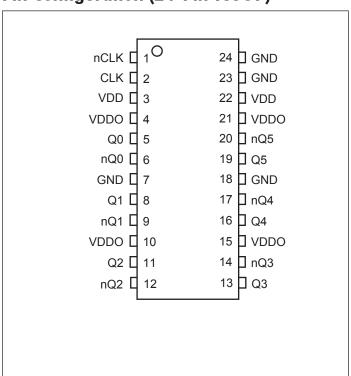
High Performance LVDS Fanout Buffer

Features

- → 6 LVDS outputs
- → Up to 1.5GHz output frequency
- → Ultra low additive phase jitter: < 0.03 ps (typ) (differential 156.25MHz, 12KHz to 20MHz integration range)
- → Single differential input
- → Low delay from input to output (Tpd typ. < 1.5ns)
- → Separate Input output supply voltage for level shifting
- \rightarrow 2.5V / 3.3V power supply
- → Industrial temperature support
- → TSSOP-24 package


Description

The PI6C4921506 is a high performance fanout buffer device-which supports up to 1.5GHz frequency. The device also uses Pericom's proprietary input detection technique to make sure illegal input conditions will be detected and reflected by output states. This device is ideal for systems that need to distribute low jitter clock signals to multiple destinations.


Applications

- → Networking systems including switches and Routers
- → High frequency backplane based computing and telecom platforms

Block Diagram

Pin Configuration (24-Pin TSSOP)

15-0080 1 www.pericom.com Rev B 06/18/15

Pinout Table

Pin #	Pin Name	Туре	Description	
1.2	nCLK	T		
1, 2	CLK	Input	Differential clock input	
3, 22	V _{DD}	Power	Power supply	
4, 10, 15, 21	V _{DDO}	Power	IO power supply	
F 6	Q0	Outmut	IVDC output aloak	
5, 6	nQ0	Output	LVDS output clock	
7, 18, 23, 24	GND	Power	Ground	
0.0	Q1	Outroot	IVDCttll-	
8, 9	nQ1	Output	LVDS output clock	
11 12	Q2	Outmut	IVDC output aloak	
11, 12	nQ2	Output	LVDS output clock	
12 14	Q3	Outmut	IVDC output aloak	
13, 14	nQ3	Output	LVDS output clock	
16 17	Q4	Output	LVDS output alock	
16, 17	nQ4	Output	LVDS output clock	
19, 20	Q5	Output	LVDC output clock	
19, 20	nQ5	Output	LVDS output clock	

Clock Input Function Table

Inp	uts	Outputs			
CLK	nCLK	Q0:Q5	nQ0:nQ5	Input to Output Mode	Polarity
0	1	LOW	HIGH	Differential to Differential	Non Inverting
1	0	HIGH	LOW	Differential to Differential	Non Inverting
0	Biased	LOW	HIGH	Single Ended to Differential	Non Inverting
1	Biased	HIGH	LOW	Single Endded to Differential	Non Inverting
Biased	0	HIGH	LOW	Single Endded to Differential	Inverting
Biased	1	LOW	HIGH	Single Endded to Differential	Inverting

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested)

Supply Voltage, V _{DD} 4.65V
Inputs, V_1
Outputs, I_{O} (LVDS)
Continuous Current
Surge Current
Package Thermal Impedence, Θ_{IA} 70°C/W (0 mps)
Storage temperature, T _{STG} (Junction-to-Ambient)
-65 to +150°C

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Power Supply DC Characteristics $(V_{DD} = V_{DDO} = 3.3V \pm 5\%, T_A = -40^{\circ}C \text{ TO } 85^{\circ}C)$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
$I_{_{ m DD}}$	Power Supply Current				70	mA
I_{DDO}	Output Supply Current				100	mA

Power Supply DC Characteristics $(V_{DD} = V_{DDO} = 2.5V \pm 5\%, T_A = -40^{\circ}C \text{ TO } 85^{\circ}C)$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V _{DD}	Positive Supply Voltage		2.375	2.5	2.625	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
$I_{_{ m DD}}$	Power Supply Current				65	mA
I_{DDO}	Output Supply Current				102	mA

Differential DC Characteristics $(V_{DD} = V_{DDO} = 3.3V \pm 5\% \text{ or } 2.5V \pm 5\%, T_A = -40 ^{\circ}\text{C TO } 85 ^{\circ}\text{C})$

Symbol	Parameter		Test Condition	Min.	Тур.	Max.	Units
т	1 11110	CLK	$V_{IN} = V_{DD}$			10	μΑ
I _{IH}	Input High Current	nCLK	$V_{IN} = V_{DD}$			150	μΑ
т	I	CLK	$V_{IN} = 0V$	-150			μΑ
I _{IL}	Input Low Current	nCLK	$V_{IN} = 0V$	-10			μΑ
V_{pp}	Peak-to-Peak Input Vo	oltage ⁽¹⁾		0.15		1.3	V
V _{CMR}	Common Mode Input	Voltage ^(1, 2)		GND+0.5		V _{DD} -0.85	V

Note:

- 1. VIL should not be less than -0.3V
- 2. Common mode voltage is defined as VH

LVDS DC Characteristics $(V_{DD} = V_{DDO} = 3.3V \pm 5\%, T_A = -40$ °C TO 85°C)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V _{od}	Differential Output Voltage		326		526	mV
$\Delta V_{_{ m OD}}$	V _{OD} Magnitude Change				50	mV
V _{os}	Offset Voltage		1.2		1.3	V
ΔV_{OS}	V _{os} Magnitude Change				50	mV

Note:

Please refer to Parameter Measurement Information for output information.

LVDS DC Characteristics $(V_{DD} = V_{DDO} = 2.5V \pm 5\%, T_A = -40$ °C TO 85°C)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V _{od}	Differential Output Voltage		305		505	mV
$\Delta V_{_{ m OD}}$	V _{OD} Magnitude Change				50	mV
V _{os}	Offset Voltage		1.15		1.3	V
ΔV_{OS}	V _{os} Magnitude Change				50	mV

Note:

Please refer to Parameter Measurement Information for output information.

AC Characteristics $(V_{DD} = V_{DDO} = 3.3V \pm 5\%, T_A = -40$ °C TO 85°C)

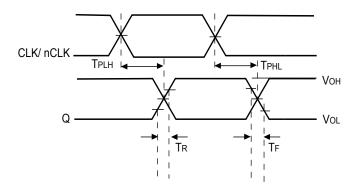
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
f_{MAX}	Output Frequency				1.5	GHz
$t_{_{\mathrm{PD}}}$	Propagation Delay ⁽¹⁾		800		1100	ps
t _{sk(o)}	Output Skew ^(2, 3)				55	ps
t _{jit}	Buffer Additive Phase Jitter, RMS	622.08MHz, Integration Range: 12kHz – 20MHz		0.067		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	50		250	ps
odc	Output Duty Cycle	≤ 622MHz	47		53	%

Note:

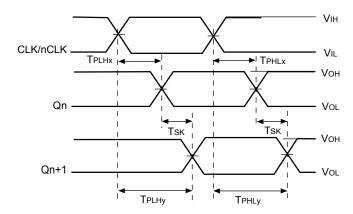
Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

- 1. Measured from the differential input crossing point to the differential output crossing point.
- 2. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured from at the output differential cross points.
- 3. This parameter is defined in accordance with JEDEC Standard 65.

15-0080 4 www.pericom.com Rev B 06/18/15

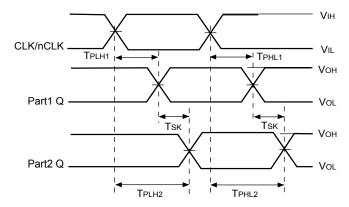

AC Characteristics ($V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40$ °C TO 85°C)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
f _{MAX}	Output Frequency				1.5	GHz
t _{PD}	Propagation Delay ⁽¹⁾		800		1200	ps
t _{sk(o)}	Output Skew ^(2, 3)				55	ps
t _{jit}	Buffer Additive Phase Jitter, RMS	622.08MHz, Integration Range: 12kHz – 20MHz		0.067		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	50		250	ps
odc	Output Duty Cycle	≤ 622MHz	47		53	%


Propagation Delay

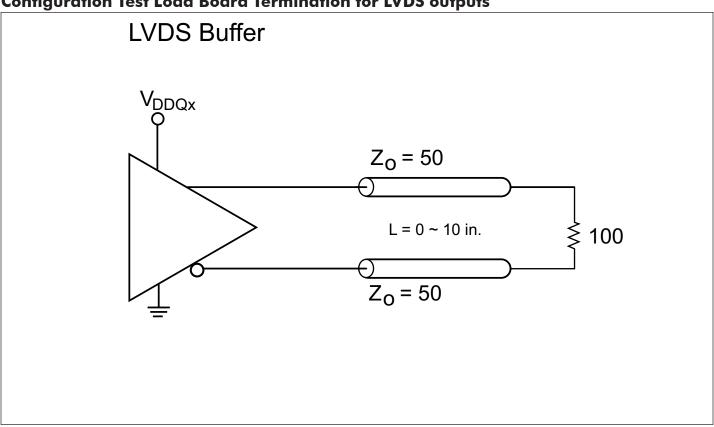
Propagation Delay T_{PD}

Output Skew

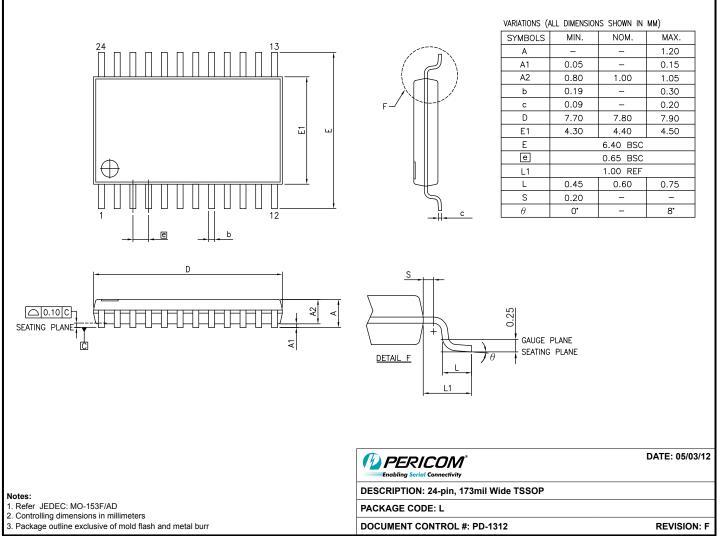

Output Skew T_{SK}

Tsk = Tplhy - Tplhx or Tsk = Tphly - Tphlx

Part to Part Skew


Part-to-Part Skew

Tsk = Tplh2 - Tplh1 or Tsk = Tphl2 - Tphl1



Configuration Test Load Board Termination for LVDS outputs

12-0374 Please check for the latest package information on the Pericom web site at www.pericom.com/packaging/

Ordering Information

Ordering Number	Package Code Package Description			
PI6C4921506LIE	L	Pb-free & Green 24-Contact TSSOP		
PI6C4921506LIEX	L	Pb-free & Green 24-Contact TSSOP, Tape & Reel		

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336