imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

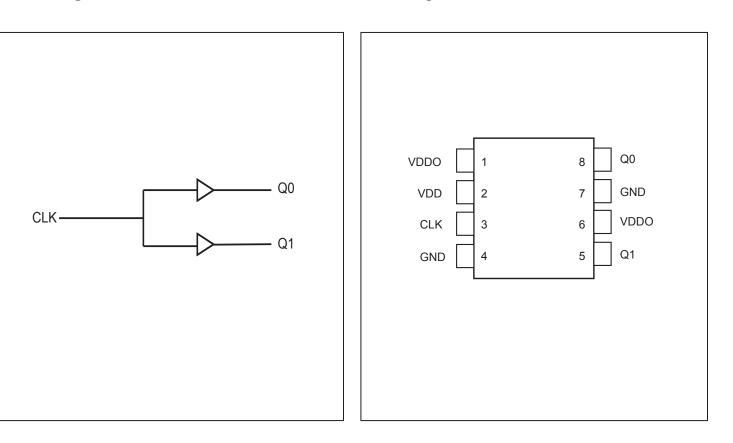
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PI6C49X0202

Low Skew, 1-To-2 LVCMOS / LVTTL Fanout Buffer


Features

- → 2 LVCMOS / LVTTL outputs
- ➔ LVCMOS / LVTTL clock input accepts LVCMOS or LVTTL input levels
- → Maximum output frequency: 250MHz
- → Output skew: 25ps (typical)
- → Part-to-part skew: 250ps (typical)
- → Small 8 lead SOIC package saves board space
- → Full 3.3V, 2.5V operation modes
- → -40°C to 85°C ambient operating temperature
- → Lead-Free package fully RoHS compliant

Description

The PI6C49X0202 is a low skew, 1-to-2 LVCMOS/LVTTL High Performance Fanout Buffer. The PI6C49X0202 has a single ended clock input. The single ended clock input accepts LVCMOS or LVTTL input levels. The PI6C49X0202 features a pair of LVCMOS/LVTTL outputs. Guaranteed output and part-topart skew characteristics make the PI6C49X0202 ideal for clock distribution applications demanding well defined performance and repeatibility.

Block Diagram

Pin Assignment

Pin Descriptions

Pin#	Pin Name	Pin Type		Pin Description
1, 6	VDDO	Power		Output supply pins.
2	VDD	Power		Core supply pin.
3	CLK	Input	Pulldown	LVCMOS / LVTTL clock input.
4,7	GND	Power		Power supply ground.
5	Q1	Output		Single clock output. LVCMOS / LVTTL interface levels.
8	Q0	Output		Single clock output. LVCMOS / LVTTL interface levels.

Note: Pulldown refer to internal input resistors, typical values in Pin Characteristics table.

Pin Characteristics

Symbol	Parameter	Test Conditions	Min.	Typical	Max.	Units
C _N	Capacitance			4		pF
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{OUT}	Output Impedance		5	7	12	Ω

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Maximum Supply Voltage, VDD, VDDC) 4.6V
Inputs, V ₁	0.5V to VDD+0.5V
Output, V _o	0.5V to VDDO +0.5V
Storage Temperature	65°C to 150°C
ESD Protection (HBM)	

Note:

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics

is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

POWER SUPPLY DC CHARACTERISTICS, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
VDD		3.3V Operation	3.135	3.3	3.465	37	
VDD	Core Supply Voltage	2.5V Operation	2.375	2.5	2.625	V	
		3.3V Supply	3.135	3.3	3.465	N	
VDDO	Output Power Supply Voltage	2.5V Supply	2.375	2.5	2.625	v	
IDD	Power Supply Current				5	mA	
IDDO	Output Supply Current	unloaded, 25MHz			6.5	mA	

Note: Parameters measured up to $f_{_{\rm max}}$ unless otherwise noted.

Symbol	Parameter	Condition	Conditions		Тур.	Max.	Units
N7	Lange II. d. Malta a	VDD = 3.3	VDD = 3.3V			VDD+0.3	37
V _{IH}	V _{IH} Input High Voltage		V	1.7		VDD+0.3	
V	Lanut Loui Volto co	VDD = 3.3	V	-0.3		0.8	37
V _{IL}	Input Low Voltage	VDD = 2.5	V	-0.3		0.8	V
т	Input High Current		$VDD = V_{IN} = 3.465V$			100	μΑ
1 _{IH}			$VDD = V_{IN} = 2.625V$			80	
T	Input Low Current	VDD = 3.4	$VDD = 3.465V, V_{IN} = 0V$				— μΑ
I _{IL}	Input Low Current	VDD = 2.6	$VDD = 2.625V, V_{IN} = 0V$				
V _{OH}	Outant High Valtage	VDDO = 3.3V	$I_{OH} = -100 \mu A$	2.9			V
	Output High Voltage	VDDO = 2.5V	$I_{OH} = -100 \mu A$	2.2			v
V _{OL}	Ondered Land Weld	VDDO = 3.3V	$I_{OL} = 100 \mu A$			0.2	V
	Output Low Voltage	VDDO = 2.5V	$I_{OL} = 100 \mu A$			0.2	V

LVCMOS / LVTTL DC CHARACTERISTICS, $T_{A} = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
c	O danat E anna an	VDDO = 3.3V	4		250	MHz
f _{max}	Output Frequency	VDDO = 2.5V	4		250	
	Propagation Delay, Low-to-High;	VDDO = 3.3 V, $f \le 250$ MHz	1.4		2.2	
tp _{LH} NOTE 1	NOTE 1	VDDO = 2.5V, $f \leq$ 250MHz	1.5		3.0	– ns
tsk(0)	Output Skew; NOTE 2			25	80	ps
<i>tsk</i> (pp)	Part-to-Part Skew; NOTE 3			250	800	ps
t _R C	Output Dies Time NOTE 4	VDDO = 3.3V	100	300	400	ps
	Output Rise Time NOTE 4	VDDO = 2.5V	100	350	500	
	Output Fall Time NOTE 4	VDDO = 3.3V	100	300	400	20
t _F	Output Fall Time NOTE 4	VDDO = 2.5V	100	350	500	– ps
		<i>f</i> ≤133MHz	48		52	%
odc	Output Duty Cycle NOTE 5	133 MHz $< f \le 200$ MHz	47		53	%
		200MHz < <i>f</i> ≤250MHz	47		53	%
t	Additive DMS Litter	156.25MHz (@12kHz to 20MHz)		0.1		ps
t _{jit}	Additive RMS Jitter	125MHz (@12kHz to 20MHz)		0.07		ps

AC CHARACTERISTICS, VDD = $3.3V \pm 5\%$, T_A = -40°C to 85°C

Parameters measured at $\mathbf{f}_{_{\rm MAX}}$ unless otherwise noted.

NOTE 1: Measured from VDD /2 of the input to VDDO /2 of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO /2. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at VDDO /2.

NOTE 4: Defined from 20% to 80%

NOTE 5: Measured at VDDO /2

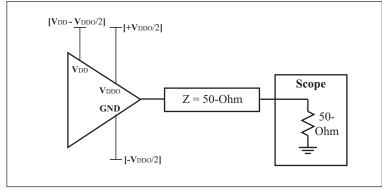
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
$\boldsymbol{f}_{\text{MAX}}$	Output Frequency	VDDO = 2.5V	4		250	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1	VDDO = 2.5V, $f \le$ 250MHz	1.5		2.8	ns
tsk(0)	Output Skew; NOTE 2			25	75	ps
<i>tsk</i> (pp)	Part-to-Part Skew; NOTE 3			250	800	ps
t _R	Output Rise Time NOTE 4	VDDO = 2.5V	100	350	500	ps
t _F	Output Fall Time NOTE 4	VDDO = 2.5V	100	350	500	ps
		<i>f</i> ≤133MHz	48		52	%
odc	Output Duty Cycle NOTE 5	133 MHz $< f \le 200$ MHz	47		53	%
		200MHz < <i>f</i> ≤250MHz	42		58	%
t		156.25MHz (@12kHz to 20MHz)		0.1		ps
t _{jit}	Additive RMS Jitter	125MHz (@12kHz to 20MHz)		0.07		ps

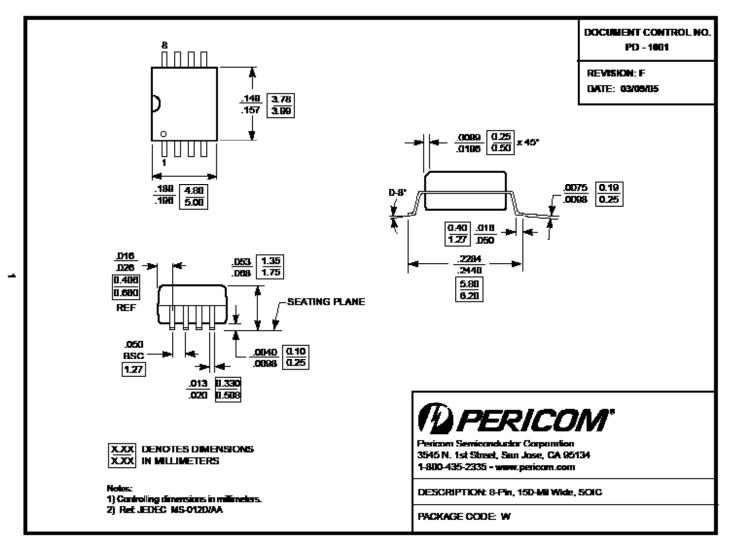
AC CHARACTERISTICS, VDD = $2.5V \pm 5\%$, T_a = -40° C to 85° C

Parameters measured at f $_{\rm MAX}$ unless otherwise noted.

NOTE 1: Measured from VDD /2 of the input to VDDO /2 of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO /2.


NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load


conditions. Using the same type of inputs on each device, the outputs are measured at VDDO /2.

NOTE 4: Defined from 20% to 80%

NOTE 5: Measured at VDDO /2

AC Test Circuit Load

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description
PI6C49X0202WIE	W	8-pin, Pb-free & Green, SOIC
PI6C49X0202WIEX	W	8-pin, Pb-free & Green, SOIC, Tape & Reel

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

2. E = Pb-free and Green

3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com