imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

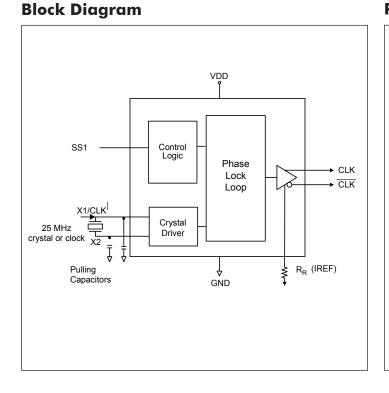
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

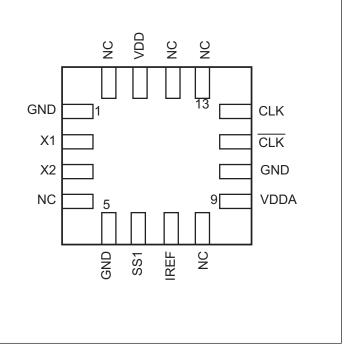
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PI6C557-01BQ

PCIe 3.0 Clock Generator with 1 HCSL Outputs


Features

- → PCIe[®] 3.0 compliant
 - Phase jitter 0.45ps RMS (High Freq. Typ.)
- ➔ LVDS compatible output
- → Supply voltage of 3.3V ±10%
- → 25MHz crystal or clock input frequency
- → HCSL outputs, 0.8V Current mode differential pair
- → Jitter 35ps cycle-to-cycle (typ)
- → Spread of -0.5% and no spread
- ➔ Industrial temperature range
- ➔ Spread Bypass option available
- ➔ Spread selection via external pins
- ➔ Packaging: (Pb-free and Green)
 - 16-pin TQFN


Description

The PI6C557-01BQ is a spread spectrum clock generator compliant to PCI Express[®] 3.0 and Ethernet requirements. The device is used for Automotive systems.

The PI6C557-01BQ provides one differential (HCSL) or LVDS spread spectrum output. Using Pericom's patented Phase-Locked Loop (PLL) techniques, the device takes a 25MHz crystal input and produces one pair of differential outputs (HCSL) at 100MHz. It also provides spread selection of -0.5% and no spread.

Pin Configuration (16-Pin TQFN)

Pin #	Pin Name	I/O Type	Description
1	GND	Power	Connect to ground
2	X1	Input	Crystal or reference clock in
3	X2	Output	Xtal out. Leave unconnected for clock input.
4	NC	-	No connect. Must not be connected to GND
5	GND	Power	Connect to ground
6	SS1	Input	Spread select 1. Internall pull up resistor
7	IREF	Output	475Ω precision resistor attached to this pin is connected to the internal current reference.
8	NC	-	No connect. Must not be connected to GND
9	VDDA	Power	Connect to 3.3V source
10	GND	Power	Connect to ground
11	CLK	Output	HCSL complimentary clock output
12	CLK	Output	HCSL clock output
13	NC	-	No connect. Must not be connected to GND
14	NC	-	No connect. Must not be connected to GND
15	VDD	Power	Connect to 3.3V source for OSC and core
16	NC	-	No connect. Must not be connected to GND

Pin Description

Table 1: Spread Selection Table

SS1	Spread		
0	Down -0.5%		
1	No Spread		

Application Information

Decoupling Capacitors

Decoupling capacitors of 0.01μ F should be connected between each V_{DD} pin and the ground plane and placed as close to the V_{DD} pin as possible.

Crystal

Use a 25MHz fundamental mode parallel resonant crystal with less than 300PPM of error across temperature.

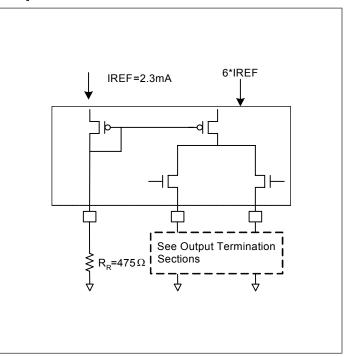
Crystal Capacitors

 C_L = Crystals's load capacitance in pF

Crystal Capacitors (pF) = $(C_L - 8) * 2$

For example, for a crystal with 16pF load caps, the external effective crystal cap would be 16 pF. (16-8)*2=16.

Current Source (IREF) Reference Resistor - R_R

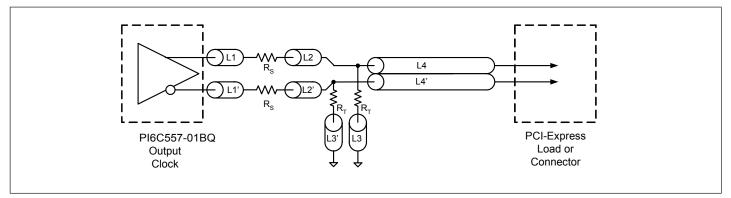

If board target trace impedance is 50Ω , then $R_R = 475\Omega$ providing an IREF of 2.32 mA. The output current (I_{OH}) is 6*IREF.

Output Termination

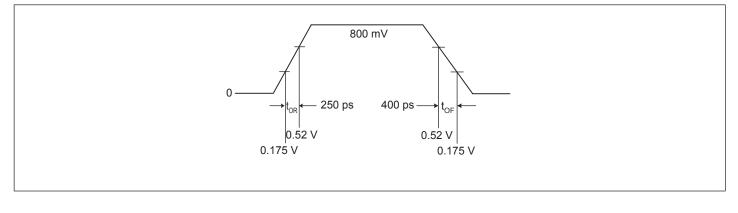
The PCI Express differential clock outputs of the PI6C557-01BQ are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in the PCI Express Layout Guidelines section.

The PI6C557-01BQ can be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines section.

Output Structures

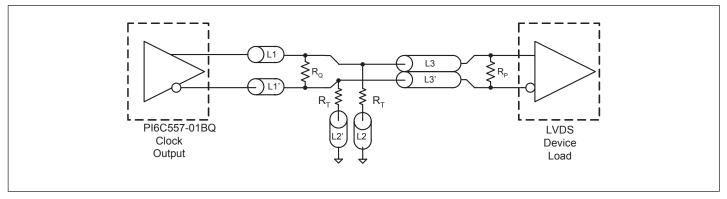

PCI Express Layout Guidelines

Common Recommendations for Differential Routing	Dimension or Value	Unit
L1 length, route as non-coupled 50Ω trace.	0.5 max	inch
L2 length, route as non-coupled 50Ω trace.	0.2 max	inch
L3 length, route as non-coupled 50Ω trace.	0.2 max	inch
R _S	33	Ω
R _T	49.9	Ω


Differential Routing on a Single PCB	Dimension or Value	Unit
L4 length, route as coupled microstrip 100Ω differential trace.	2 min to 16 max	inch
L4 length, route as coupled stripline 100Ω differential trace.	1.8 min to 14.4 max	inch

Differential Routing to a PCI Express connector	Dimension or Value	Unit
L4 length, route as coupled microstrip 100Ω differential trace.	0.25 min to 14 max	inch
L4 length, route as coupled stripline 100Ω differential trace.	0.225 min to 12.6 max	inch

PCI Express Device Routing


Typical PCI Express (HCSL) Waveform

Application Information

LVDS Recommendations for Differential Routing	Dimension or Value	Unit
L1 length, route as non-coupled 50 Ω trace.	0.5 max	inch
L2 length, route as non-coupled 50Ω trace.	0.2 max	inch
RP	100	Ω
RQ	100	Ω
RT	150	Ω
L3 length, route as 100Ω differential trace.		
L3 length, route as 100Ω differential trace.		

LVDS Device Routing

5

PERICOM[®]

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Note:

Supply Voltage to Ground Potential 5.5V	
All Inputs and Outputs	
Ambient Operating Temperature	
Storage Temperature	
Junction Temperature	
Soldering Temperature	
ESD Protection (Input) 2000 V min (HBM)	

Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Specifications

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Unit
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured in respect to GND)	+3.0		+3.6	V

DC Characteristics (V_{DD} = 3.3V ±10%, T_A = -40°C to +85°C)

Symbol	Parameter	Conditions	Conditions		Тур.	Max.	Unit
V _{DD}	Supply Voltage			3.0	3.3	3.6	V
V _{IH}	Input High Voltage ⁽¹⁾			2.0		V _{DD} +0.3	V
V _{IL}	Input Low Voltage ⁽¹⁾			GND -0.3		0.8	V
I _{IL} Input Leakage		0.11.11	With input pull-up and pull-downs			20	
	Input Leakage Current		Without input pull-up and pull-downs	-5		5	-μΑ
I _{DD}	Operating Supply Cur- rent	$R_L = 50\Omega, C_L = 2pF$				95	mA
CIN	Input Capacitance	@ 55MHz	@ 55MHz			7	pF
Cout	Output Capacitance	@ 55MHz				6	pF
L _{PIN}	Pin Inductance					5	nH
R _{OUT}	Output Resistance	CLK Outputs		3.0			kΩ

6

Notes:

1. Single edge is monotonic when transitioning through region.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _{IN}	Input Frequency			25		MHz
F _{OUT}	Output Frequency			100		MHz
V _{OH}	Output High Voltage (1,2)	100 MHz HCSL output @ V_{DD} = 3.3V	660	800	900	mV
Vol	Output Low Voltage ^(1,2)		-150	0		mV
V _{CPA}	Crossing Point Voltage ^(1,2)	Absolute	250	350	550	mV
V _{CN}	Crossing Point Voltage ^(1,2,4)	Variation over all edges			140	mV
Jcc	Jitter, Cycle-to-Cycle ^(1,3)			35	60	ps
J _{RMS}	PCIe 2.0 RMS Jitter	PCIe 2.0 Test Method @ 100MHz Output			3.1	ps
	PCIe 3.0 RMS Jitter	PLL L-BW @ 2M & 5M 1st H3		1.75	3	ps
т		PLL L-BW @ 2M & 4M 1st H3		2.18	3	ps
Jrms3.0		PLL H-BW @ 2M & 5M 1st H3		0.45	1	ps
		PLL H-BW @ 2M & 4M 1st H3		0.45	1	ps
MF	Modulation Frequency	Spread Spectrum	30	31.5	33	kHz
t _{OR}	Rise Time ^(1,2)	From 0.175V to 0.525V	175		500	ps
t _{OF}	Fall Time ^(1,2)	From 0.525V to 0.175V	175		500	ps
T _{DUTY-CYCLE}	Duty Cycle ^(1,3)		45		55	%
t _{STABLE}	From power-up to V _{DD} =3.3V	From Power-up V _{DD} =3.3V		3.0		ms
t _{SPREAD}	Setting period after spread change	Setting period after spread change		3.0		ms

HCSL Output AC Characteristics (V_{DD} = 3.3V ±10%, T_A = -40°C to +85°C)

Notes:

1. $R_L = 50$ -Ohm with $C_L = 2 \text{ pF}$

2. Single-ended waveform

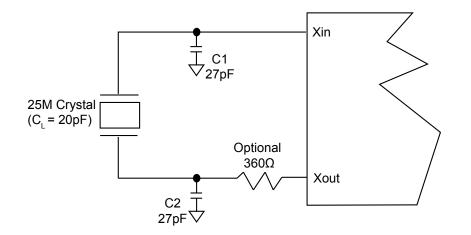
3. Differential waveform

4. Measured at the crossing point

Thermal Characteristics

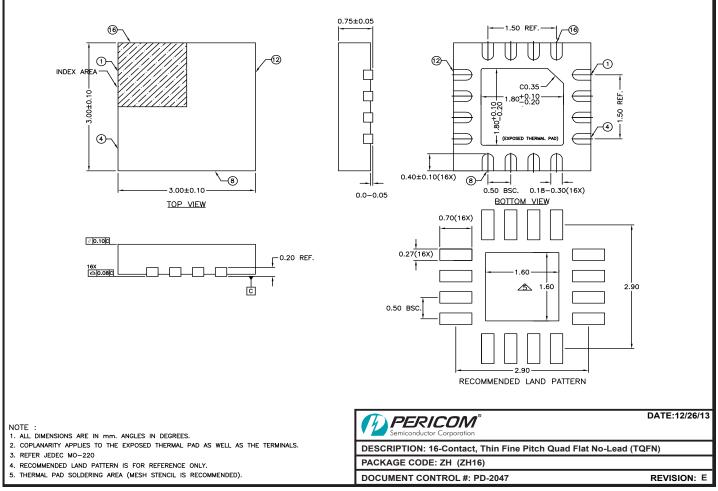
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
θ_{JA}	Thermal Resistance Junction to Ambient	Still air			57.70	°C/W
θ_{JC}	Thermal Resistance Junction to Case				32.20	°C/W

RevA


Recomended Crystal Specification

Pericom recommends:

a) FL2500184Q, SMD 3.2x2.5(4P), 25M, CL=20pF, Frequency Tolerance ±15ppm, Stability ±20ppm (http://www.pericom.com/pdf/datasheets/se/FL.pdfb)


Recommended Crystal Circuit

The following diagram shows PI6C557-05Q crystal circuit connection with a parallel crystal. For the C L=20pF parallel crystal, it is suggested to use C1=27 pF, C2=27 pF in general. C1 and C2 can be adjusted to fine tune to the target ppm of crystal oscillation according to different board layouts. R1=360 ohm is recommended in layout for smaller size crystal drive level adjustment.

8

Packaging Mechanical: 16-Pin TQFN (ZH)

Note: For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Type	Operating Temperature
PI6C557-01BQZHIEX	ZH	Pb-free & Green, 16-pin TQFN	Industrial

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

• "E" denotes Pb-free and Green

• Adding an "X" at the end of the ordering code denotes tape and reel packaging

All trademarks are property of their respective owners.

RevA