

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

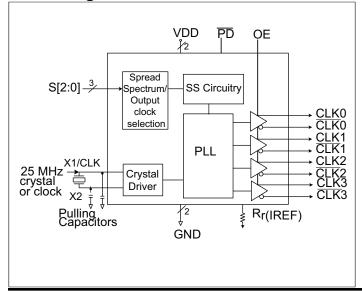
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

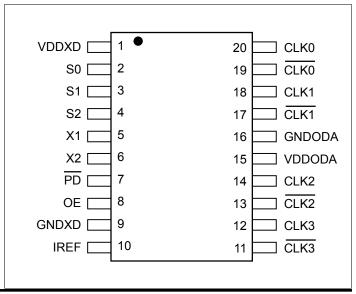
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PCIe® 2.0 Clock Generator with 4 HCSL Outputs

Product Features


- → PCIe[®] 2.0 complaint →Phase jitter - 2.1ps RMS (typ)
- → LVDS compatible outputs
- → Supply voltage of 3.3V ±5%
- → 25MHz crystal or clock input frequency
- → HCSL outputs, 0.7V Current mode differential pair
- → Jitter 40ps cycle-to-cycle (typ)
- → Spread of -0.5%, -1.0%, -1.5%, and no spread
- → Industrial temperature range
- → Spread Bypass option available
- → Spread and frequency selection via external pins
- → Packaging: (Pb-free and Green) →20-pin, 173-mil wide TSSOP

Description


The PI6C557-05 is a spread spectrum clock generator compliant to PCI Express* 2.0 and Ethernet requirements. The device is used for PC or embedded systems to substantially reduce Electromagnetic Interference (EMI).

The PI6C557-05 provides four differential (HCSL) or LVDS spread spectrum outputs. The PI6C557-05 is configured to select spread and clock selection. Using Pericom's patented Phase-Locked Loop (PLL) techniques, the device takes a 25MHz crystal input and produces four pairs of differential outputs (HCSL) at 100MHz and 200MHz clock frequencies. It also provides spread selection of -0.5%, -1.0%, -1.5%, and no spread.

Block Diagram

Pin Configuration

P-0 1

1

Pin Description

Pin #	Pin Name	I/O Type	Description
1	VDDXD	Power	Connect to a +3.3V source.
2	S0	Input	Spread Spectrum Select pin #0. See Spread Spectrum Selection table. Internal pull-up resistor.
3	S1	Input	Spread Spectrum Select pin #1. See Spread Spectrum Selection table. Internal pull-up resistor.
4	S2	Input	Spread Spectrum Select pin #2. See Spread Spectrum Selection table. Internal pull-up resistor.
5	X1	Input	Crystal connection.
6	X2	Output	Crystal connection.
7	PD	Input	Power down. Internal pull-up resistor.
8	OE	Input	Output enable. Tri-states output (High=enable outputs); Low=disable outputs). Internal pull-up resistor.
9	GND	Power	Connect to digital circuit ground.
10	IREF	Output	Precision resistor attached to this pin is connected to the internal current reference.
11	CLK3	Output	Selectable 100/200 MHz Spread Spectrum differential compliment output clock 3.
12	CLK3	Output	Selectable 100/200 MHz Spread Spectrum differential true output clock 3.
13	CLK2	Output	Selectable 100/200 MHz Spread Spectrum differential compliment output clock 2.
14	CLK2	Output	Selectable 100/200 MHz Spread Spectrum differential true output clock 2.
15	VDDODA	Power	Connect to a +3.3V analog source.
16	GND	Power	Output and Analog circuit ground
17	CLK1	Output	Selectable 100/200 MHz Spread Spectrum differential compliment output clock 1.
18	CLK1	Output	Selectable 100/200 MHz Spread Spectrum differential true output clock 1.
19	CLK0	Output	Selectable 100/200 MHz Spread Spectrum differential compliment output clock 0.
20	CLK0	Output	Selectable 100/200 MHz Spread Spectrum differential true output clock 0.

Table 2: Spread Selection Table

S2	S1	SO	Spread %	Spread Type	Output Frequency
0	0	0	-0.5	Down	100
0	0	1	-1.0	Down	100
0	1	0	-1.5	Down	100
0	1	1	No Spread	Not Applicable	100
1	0	0	-0.5	Down	200
1	0	1	-1.0	Down	200
1	1	0	-1.5	Down	200
1	1	1	No Spread	Not Applicable	200

Application Information Decoupling Capacitors

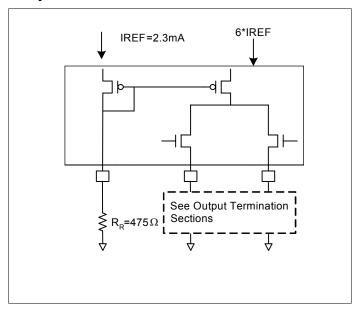
Decoupling capacitors of $0.01\mu F$ or $0.1\mu F$ must be connected between each VDD pin and the PCB ground plane and placed as close to the VDD pin as possible.

PI6C557-05 must be isolated from system power supply noise to perform optimally.

Crystal

Use a 25MHz fundamental mode parallel resonant crystal with less than 30PPM of error across temperature.

Current Source (Iref) Reference Resistor - RR


If board target trace impedance is 50-Ohm, then RR = 475-Ohm providing an IREF of 2.32 mA. The output current (IOH) is 6*IREF.

Output Termination

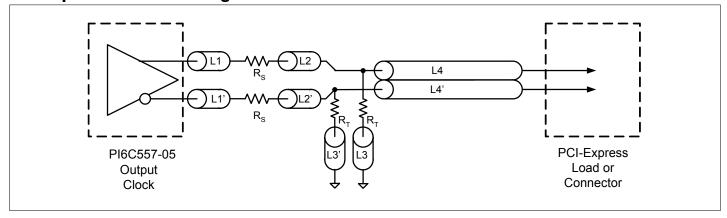
The PCI-Express differential clock outputs of the PI6C557-05 are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in the PCI-Express Layout Guidelines section.

The PI6C557-05 can be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines section.

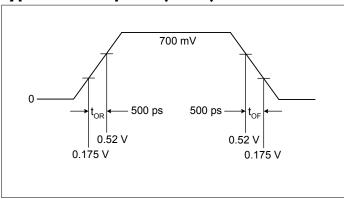
Output Structures

P-0.1

3


PCI-Express Layout Guidelines

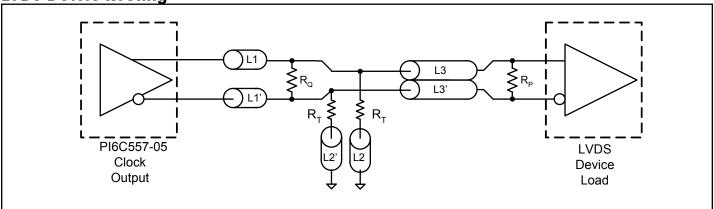
Common Recommendations for Differential Routing	Dimension or Value	Unit
L1 length, route as non-coupled 50-Ohm trace.	0.5 max	inch
L2 length, route as non-coupled 50-Ohm trace.	0.2 max	inch
L3 length, route as non-coupled 50-Ohm trace.	0.2 max	inch
R_{S}	33	Ohm
R_{T}	49.9	Ohm

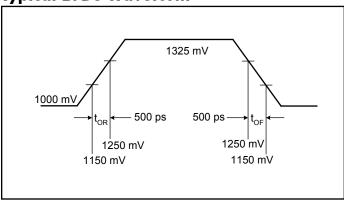

Differential Routing on a Single PCB	Dimension or Value	Unit
L4 length, route as coupled microstrip 100-Ohm differential trace.	2 min to 16 max	inch
L4 length, route as coupled stripline 100-Ohm differential trace.	1.8 min to 14.4 max	inch

Differential Routing to a PCI Express connector	Dimension or Value	Unit
L4 length, route as coupled microstrip 100-Ohm differential trace.	0.25 min to 14 max	inch
L4 length, route as coupled stripline 100-Ohm differential trace.	0.225 min to 12.6 max	inch

PCI-Express Device Routing

Typical PCI-Express (HCSL) Waveform




Application Information

LVDS Recommendations for Differential Routing	Dimension or Value	Unit
L1 length, route as non-coupled 50-Ohm trace.	0.5 max	inch
L2 length, route as non-coupled 50-Ohm trace.	0.2 max	inch
R _p	100	Ohm
R_{O}	100	Ohm
R_{T}	150	Ohm
L3 length, route as 100Ω differential trace.		
L3 length, route as 100Ω differential trace.		

LVDS Device Routing

Typical LVDS Waveform

Electrical Specifications

Maximum Ratings

Supply Voltage to Ground Potential	5.5V
All Inputs and Outputs	0.5V to V _{DD} +0.5V
Ambient Operating Temperature	-40 to +85°C
Storage Temperature	65 to +150°C
Junction Temperature	150°C
Soldering Temperature	260°C
EDS Protection (Input)	2000 V min (HBM)

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Unit
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured in respect to GND)	3.135		3.465	V

DC Characteristics ($V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V_{DD}	Supply Voltage			3.135	3.3	3.465	V
V _{IH}	Input High Voltage ⁽¹⁾			2.0		VDD +0.3	V
V_{IL}	Input Low Voltage ⁽¹⁾			GND -0.3		0.8	V
I_{IL}	Input Leakage Current	0 < Vin < VDD	Without input pull-up and pull-downs	-5		5	μΑ
I_{DD}	Operating Supply Cur-	$R_{L} = 50\Omega, C_{L} = 2$	$R_L = 50\Omega, C_L = 2pF @100MHz$		105	120	mA
I _{DDOE}	rent	OE = LOW	OE = LOW		40	50	mA
I_{DDPD}		No load $\overline{PD} = LO$	No load \overline{PD} = LOW		60	100	μА
C _{IN}	Input Capacitance	Input pin capacit	ance			7	pF
C _{OUT}	Output Capacitance	Output pin capacitance				6	pF
L _{PIN}	Pin Inductance					5	nH
R _{OUT}	Output Resistance	CLK Outputs		3.0			kΩ

Note:

1. Single edge is monotonic when transitioning through region.

AC Characteristics ($V_{DD} = 3.3V \pm 5\%$, TA = -40°C to +85°C)

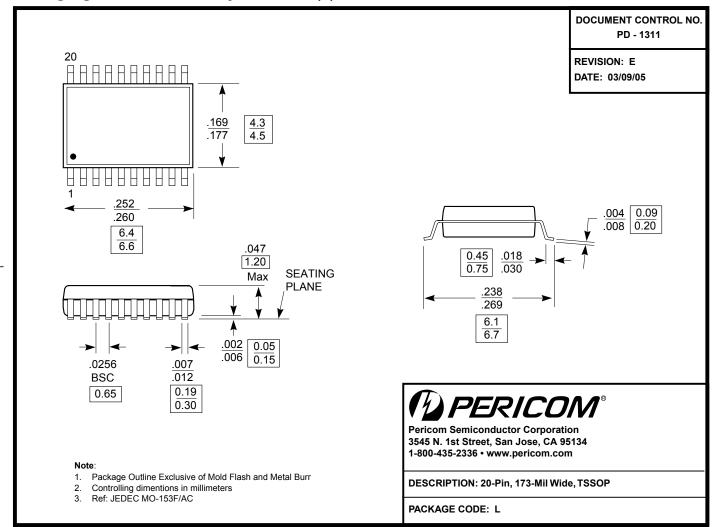
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _{IN}	Input Frequency			25		MHz
37	0.4.45	HCSL terminal			200	MII
V _{OUT}	Output Frequency	LVDS terminal			100	MHz
V _{OH}	Output High Voltage (1,2)	@VDD = 3.3V	660	700	850	mV
V_{OL}	Output Low Voltage(1,2)		-150	0	27	mV
V_{CPA}	Crossing Point Voltage(1,2)	Absolute	250	350	550	mV
$V_{\rm CN}$	Crossing Point Voltage(1,2,4)	Variation over all edges			140	mV
Jcc	Jitter, Cycle-to-Cycle(1,3)			40	60	ps
J_{RMS}	RMS Jitter	PCI-SIG jitter test method			3.1	ps
MF	Modulation Frequency	Spread Spectrum	30	31.5	33	kHz
t _{OR}	Rise Time ^(1,2)	From 0.175V to 0.525V	175	332	700	ps
t _{OF}	Fall Time ^(1,2)	From 0.525V to 0.175V	175	344	700	ps
T _{SKEW}	Skew between outputs	At Crossing Point Voltage			50	ps
T _{DUTY-CYCLE}	Duty Cycle ^(1,3)		45		55	%
T _{OE}	Output Enable Time ⁽⁵⁾	All outputs			10	μs
T_{OT}	Output Disable Time ⁽⁵⁾	All outputs			10	μs
t _{STABLE}	From power-up to VDD=3.3V	From Power-up VDD=3.3V		3.0		ms
t _{SPREAD}	Setting period after spread change	Setting period after spread change		3.0		ms

Notes:

- 1. $R_L = 50$ -Ohm with $C_L = 2$ pF and R_R
- 2. Single-ended waveform
- 3. Differential waveform
- 4. Measured at the crossing point
- 5. CLK pins are tri-stated when OE is LOW

Thermal Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
θ_{JA}	Thermal Resistance Junction to Ambient	Still air			93	°C/W
$\theta_{ m JC}$	Thermal Resistance Junction to Case				20	°C/W


Recomended Crystal Specification

Pericom recommends:

- a) GC2500003 XTAL 49S/SMD(4.0 mm), 25M, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/GC_GE.pdf
- b) FY2500081, SMD 5x3.2(4P), 25M, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf
- c) FL2500047, SMD 3.2x2.5(4P), 25M, CL=18pF, +/-20ppm http://www.pericom.com/pdf/datasheets/se/FL.pdf

Packaging Mechanical: 20-pin TSSOP (L)

Ordering Information(1-3)

Ordering Code	Package Code	PackageType
PI6C557-05LE	L	Pb-free & Green, 20-Pin TSSOP

Note:

- 1. Thermal characteristics and package top marking information can be found at http://www.pericom.com/packaging/
- 2. E = lead-free and green packaging
- 3. Adding an X suffix = tape/reel