mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PERICOM[®]

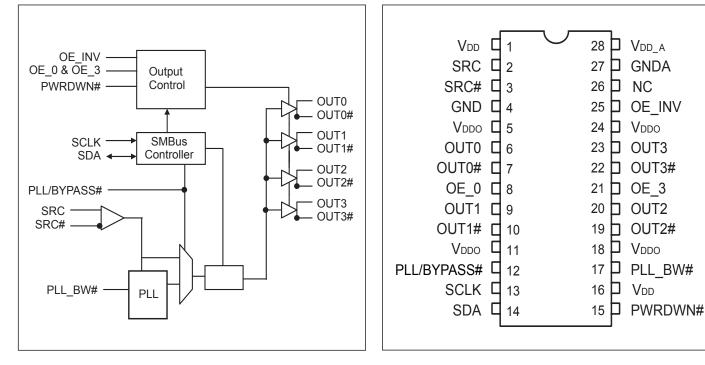
PI6CDBL402B

4 -Output Low Power PCIE GEN 1-2-3 Buffer

Features

- → Phase jitter filter for PCIe 3.0/ 2.0/ 1.0 application
- ➔ Low power consumption with independent output power supply 1.8V~3.3V
- ➔ Low skew < 60ps</p>
- → Low cycle-to-cycle jitter 45ps (typ.) @100MHz
- → < 1 ps additive RMS phase jitter</p>
- → Output Enable for all outputs
- → Programmable PLL Bandwidth
- → 100 MHz PLL Mode operation
- → 1 400 MHz Bypass Mode operation
- → 3.3V Operation

Block Diagram


➔ Packaging (Pb-free and Green): -28-Pin TSSOP (L28)

Description

Pericom Semiconductor's PI6CDBL402B is a PCIe 3.0 compliant high-speed, low-noise differential clock buffer designed to be companion to PCIe 3.0 clock generator. It is backward compatible with PCIe 1.0 and 2.0 specification.

The device distributes the differential SRC clock from PCIe 3.0 clock generator to four differential pairs of clock outputs either with or without PLL. The clock outputs are controlled by input selection of PWRDWN# and SMBus, SCLK and SDA.

Pin Configuration

Pin Description

Pin #	Pin Name	Туре	Description
2, 3	SRC & SRC#	Input	0.7V Differential SRC input from PI6C410 clock synthesizer
			3.3V LVTTL input for enabling outputs, active high.
8, 21	OE_0 & OE_3	Input	OE_0 for OUT0 / OUT0#
			OE_3 for OUT3 / OUT3#
			3.3V LVTTL input for inverting the OE and PWRDWN# pins.
25	OE_INV	Input	When $0 = $ same stage
			When 1 = OE_0, OE_3, PWRDWN# inverted.
6, 7, 9, 10, 19, 20, 22, 23	OUT[0:3] & OUT[0:3]#	Output	0.7V Differential outputs, refer Power Management Table for detail output status
12	PLL/BYPASS#	Input	3.3V LVTTL input for selecting fan-out of PLL operation.
13	SCLK	Input	SMBus compatible SCLOCK input
14	SDA	I/O	SMBus compatible SDATA
26	NC		No Connect
17	PLL_BW#	Input	3.3V LVTTL input for selecting the PLL bandwidth
15	PWRDWN#	Input	3.3V LVTTL input for Power Down operation, active low
5, 11, 18, 24	V _{DDO}	Power	Power supply for outputs, range from 1.8V~3.3V
4	GND	Ground	Ground for Outputs
27	GNDA	Ground	Ground for PLL
28	V _{DD_A}	Power	3.3V Power Supply for PLL
1, 16	V _{DD}	Power	3.3V Power Supply for PLL

Power Management Table

Output[0]/ Output[3] state choose

OE_INV	PWRDWN#	Byte0/Bit7	OE_0/OE_3(Pin)	OE(SMBus bit)	OUT0/ OUT3	OUT0#/ OUT3#
0	X	Х	0	X	LOW	LOW
0	X	Х	X	0	LOW	LOW
0	0	0	1	1	HIGH	LOW
0	0	1	X	X	LOW	LOW
0	1	Х	1	1	Clock output	Clock output
1	X	Х	1	Х	LOW	LOW
1	Х	Х	X	0	LOW	LOW
1	1	0	0	1	HIGH	LOW
1	1	1	Х	X	LOW	LOW
1	0	X	0	1	Clock output	Clock output

Output[1]/ Output[2] state choose

OE_INV	PWRDWN#	Byte0/Bit7	OE(Pin)	OE(SMBus bit)	OUT1/OUT2	OUT1#/ OUT2#
0	X	X	NA	0	LOW	LOW
0	0	0	NA	1	HIGH	LOW
0	0	1	NA	Х	LOW	LOW
0	1	X	NA	1	Clock output	Clock output
1	X	X	NA	0	LOW	LOW
1	1	0	NA	1	HIGH	LOW
1	1	1	NA	Х	LOW	LOW
1	0	X	NA	1	Clock output	Clock output

Notes:

1. all registers can't be written/read during PWRDWN# active

Serial Data Interface (SMBus)

This part is a slave only device that supports blocks read and block write protocol using a single 7-bit address and read/write bit as shown below.

Read and write block transfers can be stopped after any complete byte transfer by issuing STOP.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	1	0	0/1

Data Protocol

1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit
Start bit	Slave Addr	R/W	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	 Data Byte N - 1	Ack	Stop bit

Notes:

1. Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

15-0083

Data Byte 0: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
	PLL/BYPASS#				
1	0 = Fanout	RW	1 = PLL	OUT[0:3], OUT[0:3]#	NA
	1 = PLL				
	PLL Bandwidth				
2	0 = High Bandwidth,	RW	1 = Low	OUT[0:3], OUT[0:3]#	NA
	1 = Low Bandwidth				
3	Reserved				NA
4	Reserved				NA
5	Reserved				NA
6	Reserved				NA
7	PD_Mode	DIAZ	0		NT A
7	Refer Power Management Table	RW	0	OUT[0:3], OUT[0:3]#	NA

Data Byte 1: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
1	OUTPUTS enable	RW	1 = Enabled	OUT0, OUT0#	NA
2	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT1, OUT1#	NA
3	Reserved				NA
4	Reserved				NA
5	OUTPUTS enable	RW	1 = Enabled	OUT2, OUT2#	NA
6	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT3, OUT3#	NA
7	Reserved				NA

4

Data Byte 2: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
1	Reserved				NA
2	Reserved				NA
3	Reserved				NA
4	Reserved				NA
5	Reserved				NA
6	Reserved				NA
7	Reserved				NA

Data Byte 3: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0		RW			
1		RW			
2		RW			
3	D 1	RW			
4	Reserved	RW			
5		RW			
6		RW			
7		RW			

Data Byte 4: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0		R	0	NA	NA
1		R	0	NA	NA
2		R	0	NA	NA
3	Pericom ID	R	0	NA	NA
4		R	0	NA	NA
5		R	1	NA	NA
6		R	0	NA	NA
7		R	0	NA	NA

5

Power Down (PWRDWN# assertion)

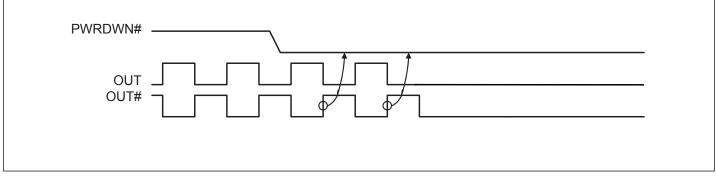


Figure 1. Power down sequence

Power Down (PWRDWN# De-assertion)

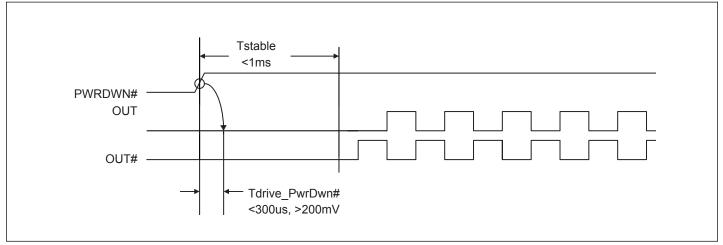
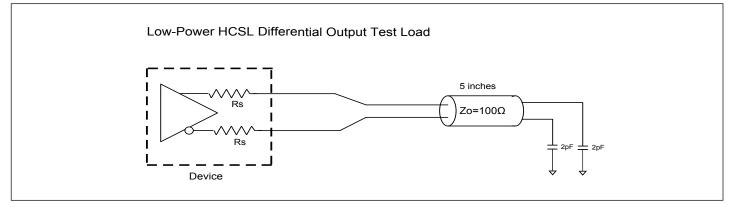
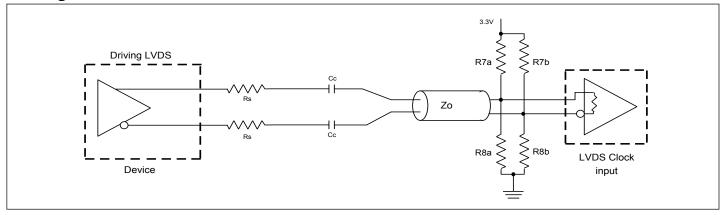



Figure 2. Power down de-assert sequence


6

Test Loads

Driving LVDS

Driving LVDS inputs with the PI6CDBL402B

	Va	Value						
Component	Receiver has termination	Receiver does not have termination	Note					
R7a, R7b	10Κ Ω	140 Ω						
R8a, R8b	5.6Κ Ω	75 Ω						
Cc	0.1 uF	0.1 uF						
Vcm	1.2 volts	1.2 volts						

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Supply Voltage to Ground Potential	4.6V
All Inputs and Output	0.5V toV _{DD} +0.5V
Ambient Operating Temperature	-40 to +85°C
Storage Temperature	65°C to +150°C
Junction Temperature	125°C
Soldering Temperature	
ESD Protection (Input)	2000V(HBM)

Note: Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics–Clock Input Parameters ($T_A = -40 \sim 85^{\circ}C$; VDD = 3.3V+/-10%; VDDO =

Symbol	Parameters	Condition	Min.	Туре	Max.	Units
V	Input High Voltage DIE INI	Differential inputs	(00	000	1150	mV
$V_{_{IHDIF}}$	Input High Voltage - DIF_IN ¹	(single-ended measurement)	600	800		111V
V	Innut Low Voltage DIE IN13	Differential inputs	V _{ss} -	0	300	mV
V_{ILDOF}	Input Low Voltage - DIF_IN ^{1,3}	(single-ended measurement)	300	U		IIIV
V _{com}	Input Common Mode Voltage - DIF_IN ¹	Common Mode Input Voltage	300		725	mV
V _{swing}	Input Amplitude - DIF_IN ¹	Peak to Peak value (V _{IHDIF} - V _{ILDIF})	300		1450	mV
dv/dt	Input Slew Rate - DIF_IN ^{1,2}	Measured differentially	0.4			V/ns
I	Input Leakage Current ¹	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA
d_{tin}	Input Duty Cycle ¹	Measurement from differential wave- from	45		55	%
J _{DIFIn}	Input Jitter - Cycle to Cycle ¹	Differential Measurement	0		150	ps

3.3V+/-10%, VDDO = 2.5V+/-10%, VDDO = 1.8V+/-10%, See Test Loads for Loading Conditions)

Note:

1. Guaranteed by design and characterization, not 100% tested in production.

2. Slew rate measured through +/-75mV window centered around differential zero

3. The device can be driven from a single ended clock by driving the true clock and biasing the complement clock input to the VBIAS, where VBIAS is (VIH-HIGH - VIHLOW)/2

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating

Conditions ($T_A = -40 \sim 85^{\circ}C$; SVDD = 3.3V+/-10%; VDDO = 3.3V+/-10%, VDDO = 2.5V+/-10%, VDDO = 1.8V+/-10%, See Test Loads for Loading Conditions)

Symbol	Parameters	Condition		Туре	Max.	Units
V_{DD_A}, V_{DD}	Supply Voltage ¹	Supply voltage for core, analog	3.0	3.3	3.6	V
		3.3V Operation	2.97	3.3	3.63	
V _{DDO}	Supply Voltage ¹	2.5V Operation	2.25	2.5	2.75	V
		1.8V Operation	1.62	1.8	1.98	1
$V_{_{\rm IH}}$	Input High Voltage ¹	Single-ended inputs, except SMBus			V _{DD} + 0.3	V
V _{IL}	Input Low Voltage ¹	Single-ended inputs, except SMBus	-0.3		0.35 V _{DD}	V
V _{IH}	Output High Voltage ¹	Single-ended outputs, except SMBus. $I_{OH} = -2mA$	V _{DD} - 0.45			V
V _{IL}	Outputt Low Voltage ¹	Single-ended outputs, except SMBus. $I_{OL} = -2mA$			0.45	V
I		Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA
I _{inp}	Input Current ¹	Single-ended inputs $V_{IN} = 0$ V; Inputs with internal pull-up resistors $V_{IN} = VDD$; Inputs with internal pull-down resis- tors	-200		200	uA
F _{ibyp}		Bypass mode	1		400	MHz
F _{ipll100}	Input Frequency ²	100MHz PLL mode	95	100.00	105	MHz
Lpin	Pin Inductance ¹				7	nH
C _{IN}		Logic Inputs, except DIF_IN	1.5		5	pF
C _{INDIF_IN}	Capacitance ^{1,4}	DIF_IN differential clock inputs	1.5		2.7	pF
C _{OUT}		Output pin capacitance			6	pF
T _{stab}	Clk Stabilization ^{1,2}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock 0.6		1	ms	
f _{modin}	Input SS Modulation Frequency ¹	Allowable Frequency (Triangular Modulation)	30	31.500	33	kHz
t _{latoe#}	OE# Latency ^{1,3}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	clocks
t _{drvpd}	Tdrive_PD# ^{1,3}	DIF output enable after PD# de-assertion		300	us	
t _F	Tfall ^{1,2}	Fall time of single-ended control inputs			5	ns
t _R	Trise ^{1,2}	Rise time of single-ended control inputs			5	ns
V _{ILSMB}	SMBus Input Low Voltage ¹				0.8	V
V _{IHSMB}	SMBus Input High Voltage ¹				3.6	V

9

All trademarks are property of their respective owners.

Electrical Characteristics–Input/Supply/Common Parameters–Normal Operating Conditions Cont...

Symbol	Parameters	Condition	Min.	Туре	Max.	Units
V _{olsmb}	SMBus Output Low Voltage ¹	@ I _{pullup}			0.4	V
I _{PULLUP}	SMBus Sink Current ¹	@ V _{0L}	4			mA
V _{DDSMB}	Nominal Bus Voltage ¹	3.3V bus voltage	2.7		3.6	V
t _{RSMB}	SCLK/SDATA Rise Time ¹	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns
t _{FSMB}	SCLK/SDATA Fall Time ¹	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns
£	SMBus Operating	Marine CMP and an anti-			400	1_1.1_
I _{MAXSMB}	Frequency ^{1,5}	Maximum SMBus operating frequency			400	kHz

Note:

1. Guaranteed by design and characterization, not 100% tested in production.

2. Control input must be monotonic from 20% to 80% of input swing. Input Frequency Capacitance

3. Time from deassertion until outputs are >200 mV

4. DIF_IN input

5. The differential input clock must be running for the SMBus to be active

Electrical Characteristics–DIF 0.7V Low Power HCSL Outputs ($T_A = -40 \sim 85^{\circ}C$; VDD = 3.3V + /-10%;

VDDO = 3.3V + -10%, VDDO = 2.5V + -10%, VDDO = 1.8V + -10%, See Test Loads for Loading Conditions)

Symbol	Parameters	Condition		Туре	Max.	Units
Trf	Slew rate ^{1,2,3}		1.1	2	4.5	V/ns
V _{HIGH}	Voltage High ^{1,7}	Statistical measurement on single-ended signal using	660		950	mV
V _{LOW}	Voltage Low ^{1,7}	oscilloscope math function. (Scope averaging on)			200	mV
Vmax	Max Voltage ¹	Measurement on single ended signal using			1150	mV
Vmin	Min Voltage ¹	absolute value. (Scope averaging off)				mV
Vswing	Vswing ^{1,2,7}	Scope averaging off				mV
Crossing Voltage (abs)	Vcross_abs	Scope averaging off			550	mV
Crossing Voltage (var)	Δ-Vcross	Scope averaging off			140	mV

Note:

1. Guaranteed by design and characterization, not 100% tested in production.

2. Measured from differential waveform

3. Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

4. Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

5. Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

6. The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

7. At default SMBus settings.

Electrical Characteristics–Current Consumption ($T_A = -40 \sim 85^{\circ}$ C; VDD = 3.3V+/-10%; VDDO = 3.3V+/-

10%, VDDO = 2.5V+/-10%, VDDO = 1.8V+/-10%, See Test Loads for Loading Conditions)

Symbol	Parameters	Condition		Туре	Max.	Units
		Total power consumption, All outputs active @100MHz, typical value under VDDO = 1.8V		50	60	mA
I _{ddop}	Operating Supply Current ¹	Total power consumption, All outputs active @100MHz PLL bypass mode, typical value under VDDO = 1.8V		24	28	mA
I	Powerdown Current ^{1,2}	Total power consumption, Outputs Low			1.3	mA

Note:

1. Guaranteed by design and characterization, not 100% tested in production.

2. Input clock stopped.

Electrical Characteristics–Output Duty Cycle, Jitter, Skew and PLL Characterisitics ($T_A =$

 $-40 \sim 85^{\circ}$ C; VDD = 3.3V+/-10%; VDDO = 3.3V+/-10%, VDDO = 2.5V+/-10%, VDDO = 1.8V+/-10%, See Test Loads for Loading Conditions)

Symbol	Parameters	Condition	Min.	Туре	Max.	Units
t _{DC}	Duty Cycle ¹	Measured differentially, PLL Mode	45		55	%
t _{DCD}	Duty Cycle Distortion ^{1,3}	Measured differentially, Bypass Mode @100MHz -1.3		0	1.3	%
t _{pdBYP}		Bypass Mode, VT = 50%	2500		5000	ps
t _{pdPLL}	Skew, Input to Output ^{1,4}	PLL Mode VT = 50%	-260		260	ps
t _{skew}	Skew, Output to Output ^{1,2}	PLL Mode VT = 50%			60	ps
t _{jcyc-cyc}	Jitter, Cycle to cycle ^{1,2}	PLL mode			60	ps
		Additive Jitter in Bypass Mode			25	ps

Note:

1. Guaranteed by design and characterization, not 100% tested in production.

2. Measured from differential waveform

3. Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

4. All outputs at default slew rate

5. The MIN/TYP/MAX values of each BW setting track each other, i.e., Low BW MAX will never occur with Hi BW MIN.

Electrical Characteristics–Phase Jitter Parameters ($T_A = -40 \sim 85^{\circ}C$; VDD = 3.3V+/-10%; VDDO =

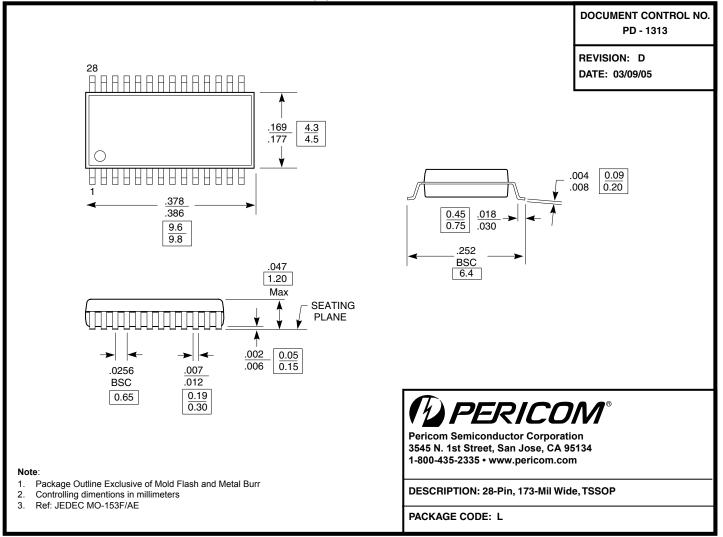
3.3V+/-10%, VDDO = 2.5V+/-10%, VDDO = 1.8V+/-10%, See Test Loads for Loading Conditions)

Symbol	Parameters	Condition	Min.	Туре	Industry Limit	Units
t _{jphPCIeG1}		PCIe Gen 1 ^{1,2,3}		34	86	ps (p-p)
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz ^{1,2}		0.9	3	ps (rms)
t _{jphPCIeG2}	Phase Jitter, PLL Mode	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz) ^{1,2}		2.2	3.1	ps (rms)
t _{jphPCIeG3}		PCIe Gen 3 (PLL BW of 2-4MHz, CDR = $10MHz$) ^{1,2,3,4}		0.5	1	ps (rms)
t _{jphSGMII}		125MHz, 1.5MHz to 20MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz ^{1,6}		1.9	NA	ps (rms)
t _{jphPCIeG1}		PCIe Gen 1 ^{1,2,3}		0.6	N/A	ps (p-p)
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz ^{1,2,5}		0.1	N/A	ps (rms)
t _{jphPCIeG2}	Additive Phase Jitter, Bypass Mode	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz) ^{1,2,5}		0.05	N/A	ps (rms)
t _{jphPCIeG3}	bypass mode	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = $10MHz$) ^{1,2,4,5}		0.05	N/A	ps (rms)
t _{jphSGMII}		125MHz, 1.5MHz to 10MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz ^{1,6}		0.15	N/A	ps (rms)

Note:

1. Applies to all outputs, with device driven by 9FG432AKLF or equivalent.

2. See http://www.pcisig.com for complete specs


3. Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

4. Subject to final ratification by PCI SIG.

5. For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = $SQRT[(total jitter)^2 - (input jitter)^2]$

6. Applies to all differential outputs

Packaging Mechanical: 28-Pin TSSOP (L)

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description
PI6CDBL402BLIE	LE	28-pin, 173-mil wide (TSSOP)
PI6CDBL402BLIEX	LE	28-pin, 173-mil wide (TSSOP), Tape & Reel

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

15-0083

- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336