imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PERICOM[®]

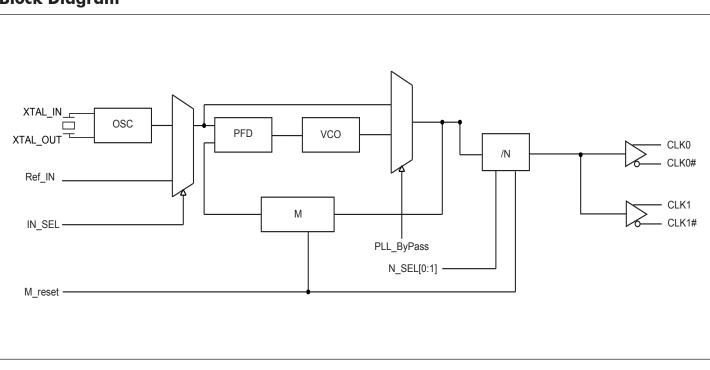
PI6LC48P0201A

2-Output LVPECL Networking Clock Generator

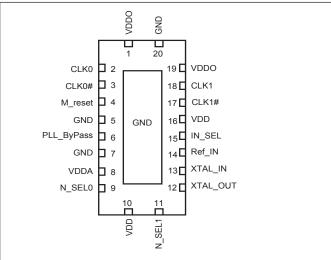
Features

- → Two differential LVPECL output pairs
- ➔ Selectable crystal oscillator interface or LVCMOS/LVTTL single-ended clock input
- ➔ Supports the following output frequencies: 62.5MHz, 125MHz, 156.25MHz
- → RMS phase jitter @ 156.25MHz, using a 25MHz crystal (12kHz – 20MHz): 0.3ps (typical)
- → RMS phase jitter @ 156.25MHz, using a 25MHz crystal (12kHz – 20MHz): 0.5ps (max.)
- → Full 3.3V or 2.5V supply modes
- → Industrial operating temperature
- → Available in lead-free package: 20-TQFN

Description


The PI6LC48P0201A is a 2-output LVPECL synthesizer optimized to generate Ethernet reference clock frequencies and is a member of Pericom's HiFlex family of high performance clock solutions. Using a 25MHz crystal, the most popular Ethernet frequencies can be generated based on the settings of 2 frequency select pins.

The PI6LC48P0201A uses Pericom's proprietary low phase noise PLL technology to achieve ultra low phase jitter, so it is ideal for Ethernet interface in all kind of systems.


Applications

→ Networking systems

Block Diagram

Pin Configuration

Pinout Table

Pin No.	Pin Name	I/O Type		Description
1, 19	VDDO	Power	-	Output Power Supply
2, 3	CLK0, CLK0#	Output	-	LVPECL Output clock 0
4	M_reset	Input	Pull-down	Master reset. "1", CLK0/CLK1 go to "low", CLK0#/CLK1# go to "high"; "0" outputs are enabled
5, 7, 20	GND	Ground	-	Ground
6	PLL_ByPass	Input	Pull-down	PLL bypass select. "0" PLL is enabled, "1" PLL is bypassed
8	VDDA	Power	-	Analog Power Supply
9, 11	N_SEL0, N_SEL1	Input	Pull-down	Output frequency select
10, 16	VDD	Power	-	Core Power Supply
12, 13	XTAL_OUT, XTAL_IN	Crystal	-	Crystal input and output
14	Ref_IN	Input	Pull-down	CMOS reference clock input
15	IN_SEL	Input	Pull-down	"0" selects Crystal, "1" selects reference input
17, 18	CLK1#, CLK1	Output	-	LVPECL Output clock 1
E-pad	GND	Ground	-	Ground

Output Frequency Selection Table

Xtal Frequency (MHz)	N_SEL1 N_SEL0	Output Frequency (MHz)
	00	156.25
25	01	125
25	10	62.5
	11	125

Typical Crystal Requirement

Parameter	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental		
Frequency	22.4	25	27.2	MHz
Equivalent Series Resistance (ESR)			50	Ω
Shunt Capacitance			7	pF
Drive Level			1	mW

Recommended Crystal Specification

Pericom recommends:

- a) FL2500047, SMD 3.2x2.5(4P), 25MHz, CL=18pF, +/-20ppm, http://www.pericom.com/pdf/datasheets/se/FL.pdf
- b) FY2500091, SMD 5x3.2(4P), 25MHz, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf

Maximum Ratings (Over operating free-air temperature range)

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics

Power Supply DC Characterisitcs, $(T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{DD} , V _{DDA} , V _{DDO}	Supply Voltage		2.97	3.3	3.63	V
V _{DD,} V _{DDA} , V _{DDO}	Supply Voltage		2.375	2.5	2.625	V
I _{GND}	Power Supply Current				110	mA
I _{DDA}	Analog Supply Current				26	mA

LVCMOS/LVTTL DC Characterisitcs, $(T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$

Symbol	Parameter	Condition	Min	Тур	Max	Units
3.7	Louise II: -h Maltana	$V_{\rm DD} = 3.3 \ { m V}$ +/- 10%	2		V _{DD} + 0.3	V
V _{IH}	Input High Voltage	$V_{\rm DD}$ = 2.5 V +/- 5%	1.7		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage	V _{DD} = 3.3 V +/- 10%	-0.3		0.8	V
		V _{DD} = 2.5 V +/- 5%	-0.3		0.7	V
I _{IH}	Input High Current	M_reset, PLL_ByPass, N_SEL[0:1], IN_SEL, Ref_IN $V_{DD} = VIN = 3.63V$			150	μΑ
I _{IL}	Input Low Current	$M_reset, PLL_ByPass, N_SEL[0:1],$ IN_SEL, Ref_IN $V_{DD} = 3.63V, V_{IN} = 0V$	-5			μΑ

Pin Characterisitcs

Symbol	Parameter	Condition	Min	Тур	Max	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLDOWNN}	Pull down resistor			51		kΩ

Symbol	Parameter	Condition	Min	Тур	Max	Units	
V _{OH}	Output High Voltage ⁽¹⁾	$V_{\rm DD} = 3.3 V$	1.9		2.4	- V	
		$V_{DD} = 2.5 V$	1.1		1.6		
Vol		$V_{\rm DD} = 3.3 V$	1.2		1.6	17	
	Output Low Voltage ⁽¹⁾	V _{DD} = 2.5V	0.4		0.8		

LVPECL DC Characterisitcs, ($T_A = -40^{\circ}C$ to 85°C)

Note: 1. LVPECL Termination: Source 150ohm to GND and 100ohm across CLK and CLK#.

AC Electrical Characteristics, $(T_A = -40 \circ C \text{ to } 85 \circ C)$

LVPECL Termination: Source 150ohm to GND and using 0.01uF ac-coupled to 50ohm to GND

Symbol	Parameter	Condition	Min.	Тур.	Max	Units
		N_SEL[1:0] = 00			170	MHz
fout	Output Frequency	N_SEL[1:0] = 01, 11	112		136	MHz
		$N_{SEL}[1:0] = 10$	56		68	MHz
t _{sk(o)}	Output Skew ^(1, 3)	Outputs with the same loading		35		ps
		156.25MHz, (1.875MHz - 20MHz)		0.2		ps
	RMS Phase Jitter, (Random) ⁽²⁾	156.25MHz, (12kHz - 20MHz)		0.3	0.5	ps
		125MHz, (1.875MHz - 20MHz)		0.2		ps
t _{jit(Ø)}		125MHz, (12kHz - 20MHz)		0.4	0.55	ps
		62.5MHz, (1.875MHz - 20MHz)		0.2		ps
		62.5MHz, (12kHz - 20MHz)		0.5	0.7	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%			400	ps
odc	Output Duty Cycle		48		52	%

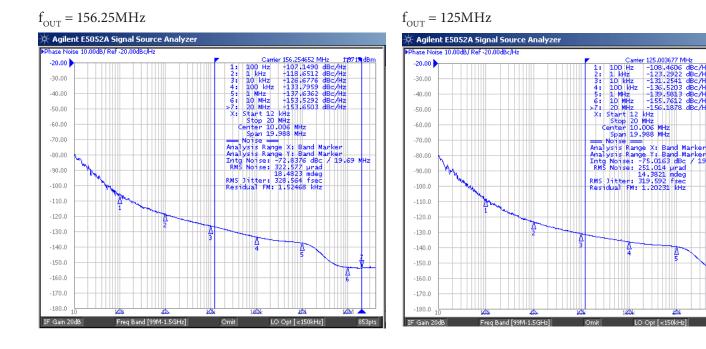
Note:

1. Defined as skew within a bank of outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points.

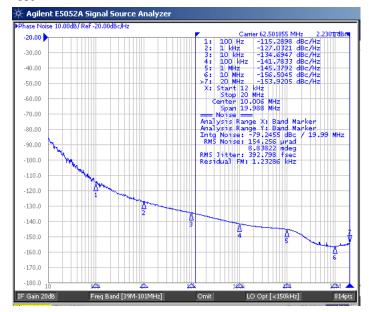
5

2. Please refer to the Phase Noise Plots.

3. This parameter is defined in accordance with JEDEC Standard 65.

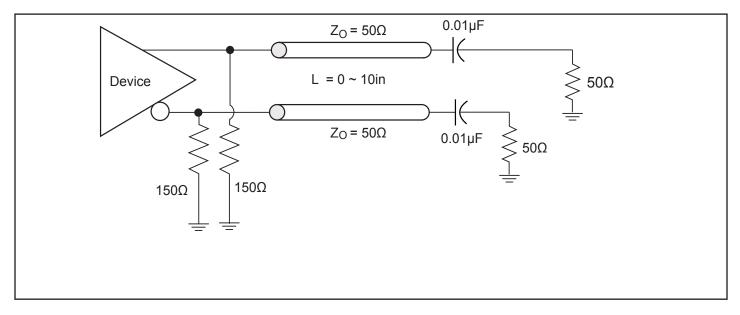

2.1828 dBr

- 747

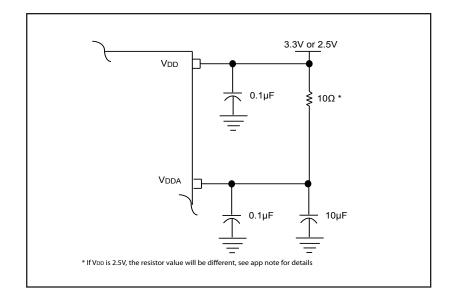

ker 19.99 MHz

8140

Phase Noise Plots



$f_{OUT} = 62.5 MHz$


15-0103

LVPECL Test Circuit

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The PI6LC48P0201A provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} , V_{DDA} and V_{DDO} should be individually connected to the power supply plane through vias, and 0.1μ F bypass capacitors should be used for each pin. Figure below illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10Ω resistor along with a 10μ F bypass capacitor be connected to the V_{DDA} pin.

Recommendations for Unused Input and Output Pins

Inputs:

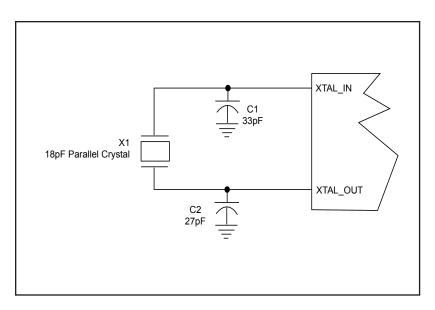
Crystal Inputs:

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. A $1k\Omega$ resistor can be tied from XTAL_IN to ground for additional protection.

Ref_IN Input:

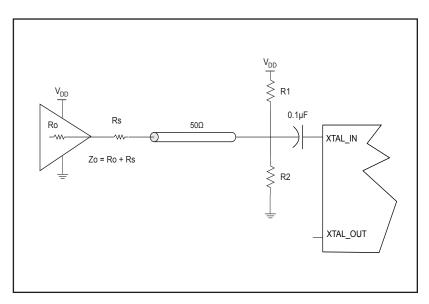
For applications not requiring the use of the clock, it can be left floating. A $1k\Omega$ resistor tied from the Ref_IN to ground can provide additional protection.

LVCMOS Control Pins:


All control pins have internal pulldowns; A $1k\Omega$ resistor tied from each control pin to ground can provide additional protection.

Outputs:

LVPECL Outputs: All unused LVPECL outputs can be left floating.


Crystal Input Interface

The clock generator has been characterized with 18pF parallel resonant crystals. The capacitor values shown in the figure below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error.

LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in the figure below. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS signals, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of the two ways. First, R1 and R2 in parallel should equal the transmission line empedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is quaranteed by using a quartz crystal.

Thermal Information

Symbol	Description	
$\Theta_{_{JA}}$	Junction-to-ambient thermal resistance	19.80 °C/W
$\Theta_{\rm JC}$	Junction-to-case thermal resistance	8.10 °C/W

Packaging Mechanical: 20-Contact TQFN (ZH)

Ordering Information

Ordering Code	Packaging Type	Package Description	Operating Temperature
PI6LC48P0201AZHIE	ZH	Pb-free & Green, 20-pin TQFN	Industrial
PI6LC48P0201AZHIEX	ZH	Pb-free & Green, 20-pin TQFN, Tape & Reel	Industrial

Notes:

NOTE :

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/ •
- "E" denotes Pb-free and Green .
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com