

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

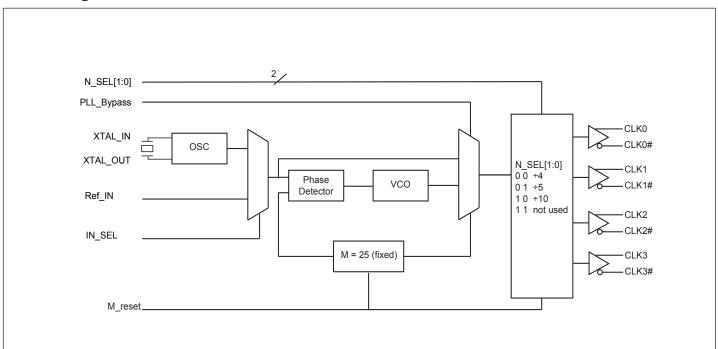
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

4-Output LVPECL Networking Clock Generator

Features

- → Four differential LVPECL output pairs
- → Selectable crystal oscillator interface or LVCMOS/LVTTL single-ended clock input
- → Supports the following output frequencies: 156.25MHz, 125MHz, 62.5MHz
- → RMS phase jitter @ 156.25MHz, using a 25MHz crystal (1.875MHz 20MHz): 0.23ps (typical)
- → RMS phase jitter @ 156.25MHz, using a 25MHz crystal (12kHz 20MHz): 0.28ps (typical)
- → Full 3.3V or 2.5V supply modes
- → -40°C to 85°C ambient operating temperature
- → Available in lead-free packages

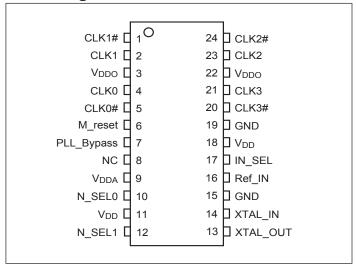
Description


The PI6LC48P0401 is a 4-output LVPECL synthesizer optimized to generate Ethernet reference clock frequencies and is a member of Pericom's HiFlex family of high performance clock solutions. Using a 25MHz crystal, the following frequencies can be generated based on the settings of 2 frequency select pins (N_SEL[1:0]): 156.25MHz, 125MHz, 62.5MHz.

The PI6LC48P0401 uses Pericom's proprietary low phase noise VCO technology and can achieve less than 1ps typical rms phase jitter, so it is ideal for Ethernet interface in all kind of systems.

Applications

→ Networking systems


Block Diagram

14-0203 1 www.pericom.com PI6LC48P0401 Rev.D 11/7/2014

Pin Configuration

Pinout Table

Pin No.	Pin Name	I/O Type		Description
1, 2	CLK1#, CLK1	Output		LVPECL Output Clock 1
3, 22	V_{DDO}	Power		Output supply pins
4, 5	CLK0, CLK0#	Output		LVPECL Output Clock 0
6	M_reset	Input	Pulldown	Active HIGH Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Qx to go low and the inverted outputs nQx to go high. When logic LOW, the internal dividers and outputs are enabled.
7	PLL_Bypass	Input	Pulldown	Selects either the PLL or the active input reference to be routed to the output dividers. When LOW, selects PLL (PLL enable). When HIGH, selects the reference clock (PLL bypass).
8	NC			Not connected
9	V_{DDA}	Power		Analog power supply
10, 12	N_SEL0, N_SEL1	Input	Pulldown	Frequency select pins
11, 18	V_{DD}	Power		Core power supply
13, 14	XTAL_OUT, XTAL_IN	Output / Input		Parallel resonant crystal interface. XTAL_OUT is the output, and XTAL_IN is the input.
15, 19	GND	Power		Ground
16	Ref_IN	Input	Pulldown	CMOS reference clock input
17	IN_SEL	Input	Pulldown	Selects between the single-ended Ref_IN or crystal interface as the PLL reference source. When HIGH, selects Ref_IN. When LOW selects XTAL inputs.
20, 21	CLK3#, CLK3	Output		LVPECL Output Clock 3
23, 24	CLK2, CLK2#	Output		LVPECL Output Clock 2

Frequency Select Function Table

		Inputs			O to the own (MIL)
N_SEL1	N_SEL0	M Div. Value	N Div. Value	M/N Div. Value	Output Frequency (MHz) (25MHz Reference)
0	0	25	4	6.25	156.25
0	1	25	5	5	125
1	0	25	10	2.5	62.5
1	1	25	Not	Used	Not Used

Typical Crystal Requirement

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamental		
Frequency			25		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

Recommended Crystal Specification

Pericom recommends:

- $a) \quad FL2500047, SMD\ 3.2x2.5(4P), 25MHz, CL=18pF, +/-20ppm, http://www.pericom.com/pdf/datasheets/se/FL.pdf$
- b) FY2500091, SMD 5x3.2(4P), 25MHz, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf

Maximum Ratings (Over operating free-air temperature range)

Storage Temperature65°C to+155°C
Ambient Temperature with Power Applied40°C to+85°C
3.3V Analog Supply Voltage0.5 to +3.6V
ESD Protection (HBM)

Note

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Specifications

Power Supply DC Characterisitcs, $(T_A = -40 \text{ to } 85^{\circ}\text{C})$

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDA}	Analog Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{GND}	Power Supply Current				130	mA
I_{DDA}	Analog Supply Current	Included in I _{GND}			30	mA

Power Supply DC Characterisitcs, $(T_A = -40 \text{ to } 85^{\circ}\text{C})$

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V_{DDA}	Analog Supply Voltage		2.375	2.5	2.625	V
$V_{\rm DDO}$	Output Supply Voltage		2.375	2.5	2.625	V
I_{GND}	Power Supply Current				125	mA
I_{DDA}	Analog Supply Current	Included in $I_{ m GND}$			30	mA

LVCMOS/LVTTL DC Characterisitcs, $(T_A = -40 \text{ to } 85^{\circ}\text{C})$

Symbol	Parameter	Condition	Min	Тур	Max	Units
3.7	Input High Voltage	$V_{_{\rm DD}}=3.3{\rm V}\pm5\%$	2		$V_{DD} + 0.3$	V
V_{IH}	Input High Voltage	$V_{_{\mathrm{DD}}} = 2.5\mathrm{V} \pm 5\%$	1.7		$V_{DD} + 0.3$	V
3.7	Input I ou Voltage	$V_{_{\rm DD}}=3.3\mathrm{V}\pm5\%$	-0.3		0.8	V
V _{IL} Inp	Input Low Voltage	$V_{_{ m DD}}$ = 2.5V \pm 5%	-0.3		0.7	V
I_{IH}	Input High Current	Ref_IN, M_reset, N_SEL[0:1], PLL_Bypass, IN_SEL, $V_{DD} = V_{IN} = 3.465V$			150	μΑ
I_{IL}	Input Low Current	Ref_IN, M_reset, N_SEL[0:1], PLL_Bypass, IN_SEL, $V_{DD} = V_{IN} = 0V$	-5			μΑ
$C_{\rm IN}$	Input Capacitance			4		pF
R _{PULL} - DOWN	Input Pulldown Resistor			51		kΩ

LVPECL DC Characterisitcs, $(V_{DD} = V_{DDO} = 3.3V \pm 5\%, T_A = -40 \text{ to } 85^{\circ}\text{C})$

Symbol	Parameter	Condition	Min	Тур	Max	Units	
V _{OH}	Output High Voltage ⁽¹⁾	$V_{DD} = 3.3V$	1.9		2.4	37	
		$V_{_{ m DD}} = 2.5 m V$	1.1		1.6	V	
V _{OL}	Output Low Voltage(1)	$V_{DD} = 3.3V$	1.2		1.6	W.	
		$V_{DD} = 2.5V$	0.4		0.8	V	

Note: 1. LVPECL Termination: Source 150ohm to GND and 100ohm across CLK and CLK#.

AC Electrical Characteristics

LVPECL Termination: Source 150ohm to GND and using 0.01uF ac-coupled to 50ohm to GND

AC Characterisitcs, $(V_{DD} = V_{DDO} = 3.3V \pm 5\%, T_A = -40 \text{ to } 85^{\circ}\text{C})$

Symbol	Parameter	Condition	Min.	Тур.	Max	Units
	N_SEL[1:0] = 00	140		170	MHz	
four	Output Frequency Range	N_SEL[1:0] = 01	112		136	MHz
		N_SEL[1:0] = 10	56		68	MHz
$t_{ m sk(o)}$	Output Skew ^(1, 2)				120	ps
		156.25MHz, (1.875MHz - 20MHz)		0.23		ps
	RMS Phase Jitter, (Random) ⁽³⁾	156.25MHz, (12kHz - 20MHz)		0.28		ps
		125MHz, (1.875MHz - 20MHz)		0.14		ps
$t_{ m jit}(\emptyset)$		125MHz, (12kMHz - 20MHz)		0.32		ps
		62.5MHz, (637kHz - 10MHz)		0.29		ps
		62.5MHz, (12kHz - 10MHz)		0.47		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%			400	ps
odc	Output Duty Cycle		48		52	%

Note: Electrical parameters are quaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

Notel: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points.

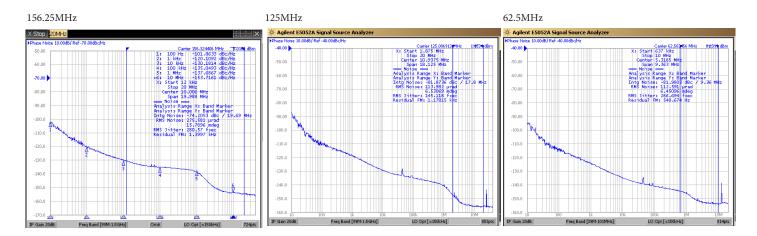
Note2: This parameter is defined in accordance with JEDEC Standard 65.

Note3: Please refer to the Phase Noise Plots.

14-0203 5 www.pericom.com PI6LC48P0401 Rev.D 11/7/2014

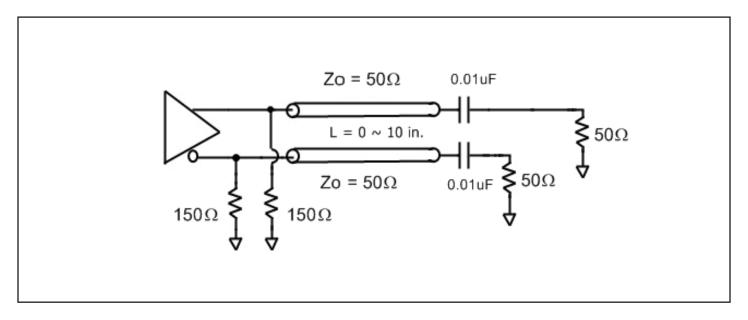
AC Characterisitcs, $(V_{DD} = V_{DDO} = 2.5V \pm 5\%, T_A = -40 \text{ to } 85^{\circ}\text{C})$

Symbol	Parameter	Condition	Min.	Typ.	Max	Units
		N_SEL[1:0] = 00	140		170	MHz
four	Output Frequency Range	N_SEL[1:0] = 01	112		136	MHz
		N_SEL[1:0] = 10	56		68	MHz
$t_{ m sk(o)}$	Output Skew ^(1, 2)				120	ps
		156.25MHz, (1.875MHz - 20MHz)		0.21		ps
	RMS Phase Jitter, (Random) ⁽³⁾	156.25MHz, (12kHz - 20MHz)		0.28		ps
		125MHz, (1.875MHz - 20MHz)		0.14		ps
$t_{ m jit(\emptyset)}$		125MHz, (12kMHz - 20MHz)		0.32		ps
		62.5MHz, (637kHz - 10MHz)		0.28		ps
		62.5MHz, (12kHz - 10MHz)		0.47		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%			400	ps
odc	Output Duty Cycle		48		52	%

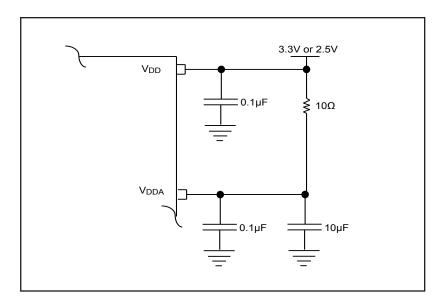

Note: Electrical parameters are quaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

 $\textbf{Note1:} \ Defined \ as \ skew \ between \ outputs \ at \ the \ same \ supply \ voltage \ and \ with \ equal \ load \ conditions. \ Measured \ at \ the \ differential \ cross \ points.$

Note2: This parameter is defined in accordance with JEDEC Standard 65.


Note3: Please refer to the Phase Noise Plots.

Phase Noise Plot



LVPECL Test Circuit

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The PI6LC48P0401 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} , V_{DDA} and V_{DDO} should be individually connected to the power supply plane through vias, and $0.1\mu F$ bypass capacitors should be used for each pin. Figure below illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10Ω resistor along with a $10\mu F$ bypass capacitor be connected to the V_{DDA} pin.

Recommendations for Unused Input and Output Pins

Inputs:

Crystal Inputs:

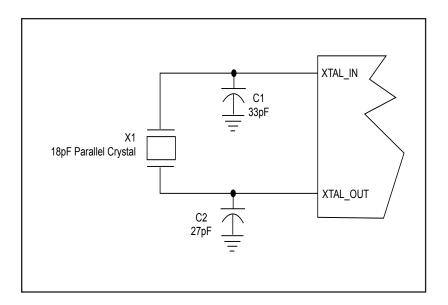
For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. A $1k\Omega$ resistor can be tied from XTAL_IN to ground for additional protection.

Ref_IN Input:

For applications not requiring the use of the clock, it can be left floating. A $1k\Omega$ resistor tied from the Ref_IN to ground can provide additional protection.

LVCMOS Control Pins:

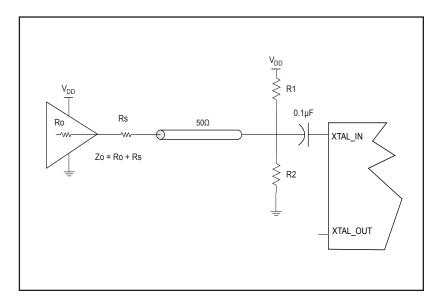
All control pins have internal pulldowns; A $1k\Omega$ resistor tied from each control pin to ground can provide additional protection.

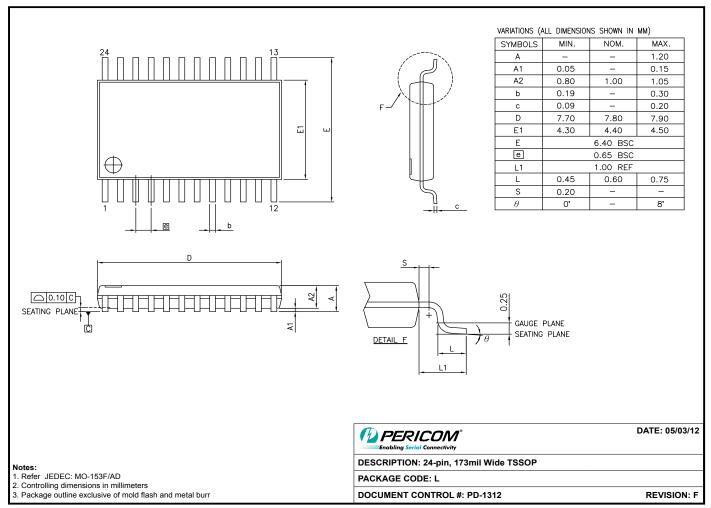

Outputs:

LVPECL Outputs:

All unused LVPECL outputs can be left floating.

Crystal Input Interface


The clock generator has been characterized with 18pF parallel resonant crystals. The capacitor values shown in the figure below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error.


LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in the figure below. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS signals, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of the two ways. First, R1 and R2 in parallel should equal the transmission line empedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is quaranteed by using a quartz crystal.

Packaging Mechanical: 24-Contact TSSOP (L)

12-0374

Ordering Information

Ordering Code	Packaging Type	Package Description	Operating Temperature
PI6LC48P0401LE	L	Pb-free & Green, 24-pin TSSOP	Commercial
PI6LC48P0401LIE	L	Pb-free & Green, 24-pin TSSOP	Industrial

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com