

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

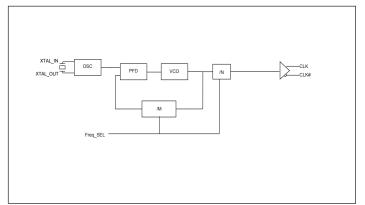
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Single Output LVPECL Clock Generator

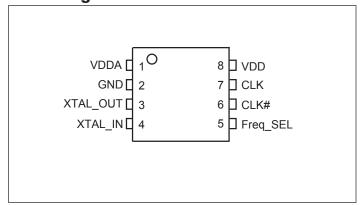
Features

- → Single differential LVPECL output
- → Output frequency range: 145MHz to 187.5MHz
- → RMS phase jitter @ 156.25MHz, using a 25MHz crystal (12kHz 20MHz): 0.3ps (typical)
- → Full 3.3V or 2.5V supply modes
- → Commercial and industrial operating temperature
- → Available in lead-free package: 8-TSSOP

Applications


- → Networking systems
- → Servers and Storage systems

Description


The PI6LC48P25104 is a single output LVPECL synthesizer optimized to generate Ethernet reference clock frequencies and is a member of Pericom's HiFlex family of high performance clock solutions. Using a 25MHz, it can generate 156.25MHz, or 187.5MHz output. Using other crystal frequencies, it can generate other popular frequencies for networking and server storage systems.

The PI6LC48P25104 uses Pericom's proprietary low phase noise PLL technology to achieve ultra low phase jitter, so it is ideal for SATA/SAS or Ethernet interface in all kind of systems.

Block Diagram

Pin Configuration

13-0109 1 www.pericom.com PI6LC48P25104 Rev. A 07/08/2013

Pinout Table

Pin No.	Pin Name	I/O Type		Description
1	VDDA	Power		Analog Power Supply
2	GND	Power		Ground
3, 4	XTAL_OUT, XTAL_IN	Crystal		Crystal Input and Output
5	Freq_SEL	Input	Pull Down	"LOW", output is multiplied by 6.25, "HIGH", output is multiplied by 7.5.
6, 7	CLK#, CLK	Output		Output Clock
8	VDD	Power		Core Power Supply

Output Frequency Table

Xtal Frequency (MHz)	Freq_SEL	Output Frequency (MHz)
20	1	150
21.25	1	159.375
24	0	150
25	0	156.25
25	1	187.5
25.5	0	159.375
30	0	187.5

Typical Crystal Requirement

	I				
Parameter		Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamental		
Emaguaman	Freq_SEL = 0	23.2		30	MII-
Frequency	Freq_SEL = 1	19.33		25	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

Recomended Crystal Specification

Pericom recommends:

a) FL2500047, SMD 3.2x2.5(4P), 25MHz, CL=18pF, +/-20ppm http://www.pericom.com/pdf/datasheets/se/FL.pdf

b) b) FY2500091, SMD 5x3.2(4P), 25MHz, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf

Maximum Ratings (Over operating free-air temperature range)

Storage Temperature65°C to+155°C
Ambient Temperature with Power Applied40°C to+85°C
3.3V Analog Supply Voltage0.5 to +3.6V
ESD Protection (HBM)

Note

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics

Power Supply DC Characterisitcs, $(V_{DD} = V_{DDA}, T_A = -40 \text{ to } 85^{\circ}C)$

Symbol	Parameter	Condition	Min.	Тур	Max	Units
V_{DD} , V_{DDA}	Core, Analog Supply Voltage		3.135	3.3	3.465	V
V _{DD} , V _{DDA}	Core, Analog Supply Voltage		2.375	2.5	2.625	V
I _{GND}	Power Supply Current				70	mA
I_{DDA}	Analog Supply Current				25	mA

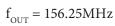
LVPECL DC Electrical Characteristics

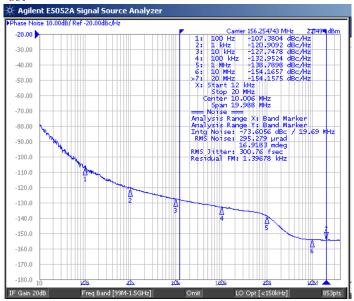
Symbol	Parameter	Condition	Min.	Тур	Max	Units
3.7	Output High Voltage ⁽¹⁾	$V_{DD} = 3.3V$	1.9		2.4	3.7
V _{OH}		$V_{DD} = 2.5V$	1.1		1.6	V
V _{OL}	Output Low Voltage(1)	$V_{DD} = 3.3V$	1.2		1.6	3.7
		$V_{DD} = 2.5V$	0.4		0.8	

Note: 1. LVPECL Termination: Source 150ohm to GND and 100ohm across CLK and CLK#.

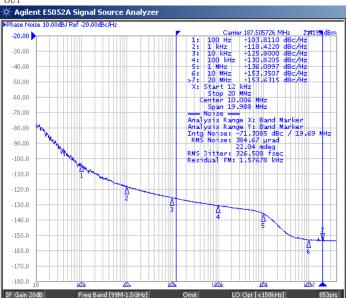
LVPECL AC Electrical Characteristics

LVPECL Termination: Source 150ohm to GND and using 0.01uF ac-coupled to 50ohm to GND

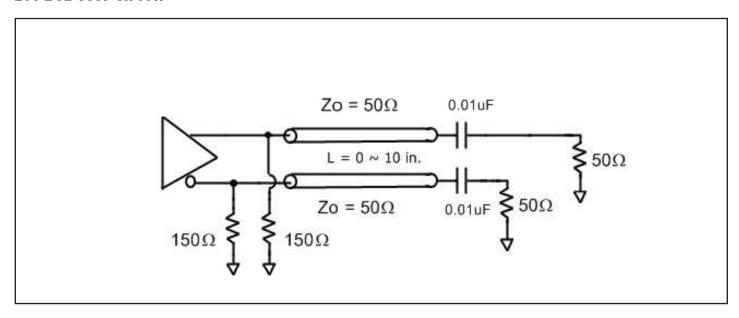

Symbol	Parameter	Condition	Min	Тур.	Max	Units
fout	Output Frequency		145	125	187.5	MHz
	RMS Phase Jitter,	156.25MHz, (12kHz - 20MHz)		0.30		ps
$t_{\mathrm{jit}(\emptyset)}$	(Random) ⁽¹⁾	187.5MHz, (12kHz - 20MHz)		0.33		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%			400	ps
O _{DC}	Output Duty Cycle		48		52	%


Note:

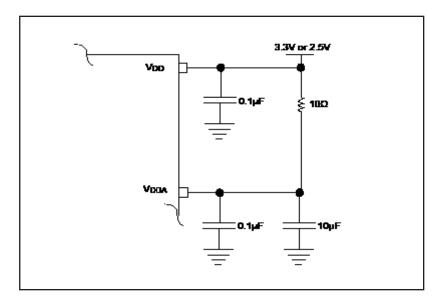
^{1.} Please refer to the Phase Noise Plots.

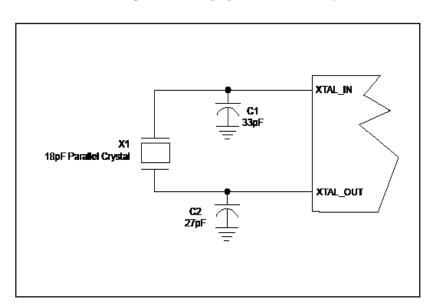


Phase Noise Plots



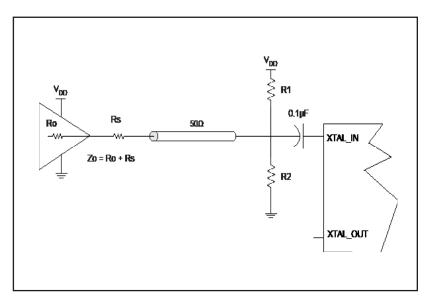
 $\underline{f_{OUT}} = 187.5 MHz$


LVPECL Test Circuit


Power Supply Filtering Techniques

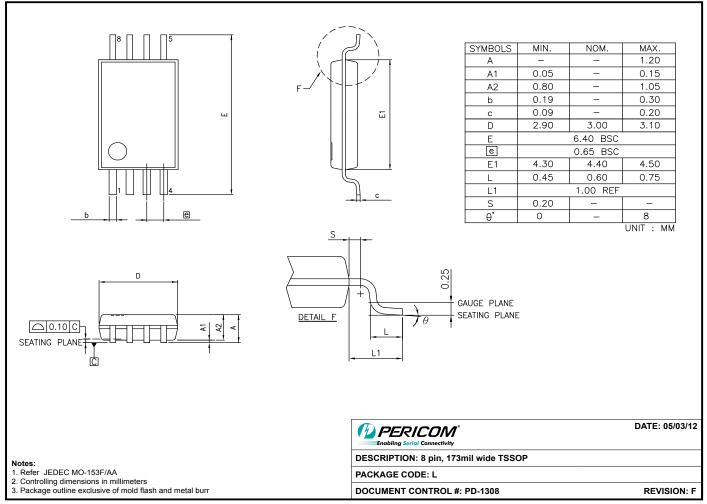
As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The PI6LC48P25104 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and $0.1\mu F$ bypass capacitors should be used for each pin. Figure below illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10Ω resistor along with a $10\mu F$ bypass capacitor be connected to the V_{DDA} pin.

Crystal Input Interface


The clock generator has been characterized with 18pF parallel resonant crystals. The capacitor values shown in the figure below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error.

LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in the figure below. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS signals, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of the two ways. First, R1 and R2 in parallel should equal the transmission line empedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is quaranteed by using a quartz crystal.



Thermal Information

Symbol	Description	Condition	
$\Theta_{_{ m JA}}$	Junction-to-ambient thermal resistance	Still air	124.0 °C/W
$\Theta_{ m JC}$	Junction-to-case thermal resistance		37.0 °C/W

Packaging Mechanical: 8-Contact TSSOP (L)

12-0370

Ordering Information

Ordering Code	Packaging Type	Package Description	Operating Temperature
PI6LC48P25104LE	L	Pb-free & Green, 8-pin TSSOP	Commercial
PI6LC48P25104LIE	L	Pb-free & Green, 8-pin TSSOP	Industrial

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging