

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

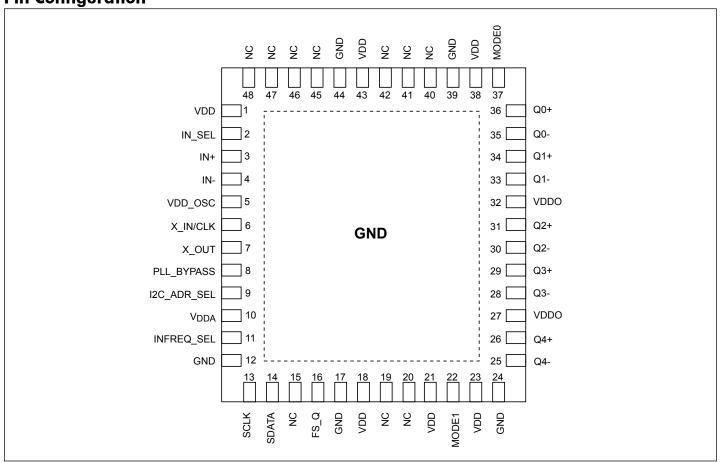
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

5 Output HiFlexTM Ethernet Network Clock Generator

Features

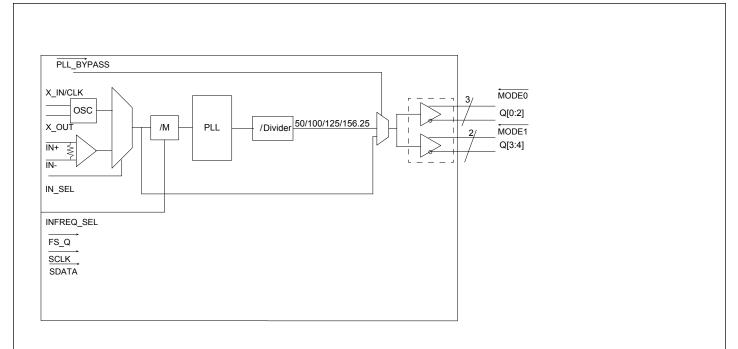

- → 3.3V & 2.5V supply voltage
- → Crystal/CMOS input: 25 MHz
- → Differential input: 25MHz, 125MHz, and 156.25 MHz
- → Output frequencies: 156.25, 125, 100, 50, 25MHz
- → 5 outputs with selectable output signaling: LVPECL or LVDS
- → Low 0.3ps typical integrated phase noise design: 156.25MHz (12kHz to 20MHz)
- → PLL Bypass mode
- → Power supply noise rejection: -52 dBc typical @ VDD
- → Packaging (Pb-free & Green): 48 Contact 6×6mm TQFN
- → Industrial temperature support: -40C to 85C

Description

The PI6LC48S0401 is an LC VCO based low phase noise design intended for Ethernet applications. Typical 10GbE usage assumes a 25MHz crystal input, while the PLL loop is used to generate the 156.25MHz and other Ethernet clock frequencies.

For Ethernet applications other than 10GbE, programmable dividers allow for outputs of 156.25, 125, 100, 50, and 25MHz. This device offers both pin selection and I²C interface to give more options to meet various system needs.

Pin Configuration



Block Diagram

Pin Description

100MHz output frequency can be selected only in I²C mode

Pin Number	Pin Name	Туре		Description
1, 18, 21, 23, 38, 43	VDD	Power	_	Core supply
2	IN_SEL	Input	CMOS	Input select between Xtal and differential input
3	IN+	Input	LVPECL	Differential reference input, also accepts AC-coupled LVDS, CML, HCSL
4	IN-	Input	LVPECL	or LVPECL. Differential inputs have an internal 100Ω cross resistor.
5	VDD_OSC	Power	-	Power supply for Xtal Oscillator circuit
6	X_IN/CLK	Input		Xtal or clock input, connect to a 25MHz Xtal or single-ended clock
7	X_OUT	Output		Xtal output
8	PLL_BYPASS	Input	CMOS	PLL bypass, provide input frequency to outputs
9	I2C_ADR_SEL	Input	CMOS	I2C address selection.
10	VDDA	Power	-	Analog supply
11	INFREQ_SEL	Input	Tri-level	Input frequency selection for reference input
12, 17, 24, 39, 44	GND	Power		Connect to ground
15, 19, 20, 40, 41, 42, 45, 46, 47, 48	NC	-		No connect

www.diodes.com

Pin Description (cont.)

Pin Number	Pin Name			Description	
rin Number	Fili Name	Type		Description	
13	SCLK	Input		I ² C clock input	
14	SDATA	Input/ Output		I ² C Data line	
16	FS_Q	Input	Tri-level	Output frequency select	
22	MODE1	Input	Tri-level	Q3 ~ Q4 output control	
25, 26	Q4-, Q4+	Output	LVPECL/ LVDS	Differential outputs	
27, 32	VDDO	Power		Power supply for differential outputs	
28, 29	Q3-, Q3+	Output	LVPECL/ LVDS	Differential outputs	
30, 31	Q2-, Q2+	Output	LVPECL/ LVDS	Differential outputs	
33, 34	Q1-, Q1+	Output	LVPECL/ LVDS	Differential outputs	
35, 36	Q0-, Q0+	Output	LVPECL/ LVDS	Differential outputs	
37	MODE0	Input	Tri-level	Q0 ~ Q2 output control	
E-pad	GND	Power		Connect to ground, use thermal vias	

www.diodes.com

Input MUX Selection

IN_SEL	Input Source
0	Crystal Input (X_IN/CLK, X_OUT)
1	Differential Input (IN+, IN-)
NC	Crystal Input (X_IN/CLK, X_OUT)

PLL Bypass Control Function

PLL_BYPASS	PLL operation
0	PLL enabled
1	PLL bypassed

Differential Output Control

MODE0	Q[0:2]	MODE1	Q[3:4]
0	LVPECL	0	LVPECL
1	LVDS	1	LVDS
NC	Hi-Z	NC	Hi-Z

Output Frequency Control Table

FS_Q	Output Freq.
0	156.25MHz
1	125MHz
NC	50MHz

12C Address Selection Table

I ² C_ADR_SEL	I2C Address
0	DC (h)
1	DE (h)

Reference Input Frequency Select Table

INFREQ_SEL	Reference Input
0	25MHz
1	125MHz
NC	156.25MHz

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C	to +150°C
Supply Voltage to Ground Potential, VDD, VDDA VDDO -(
ESD Protection (HBM)	2000 V
Junction Temperature 125 °C m	ax

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Conditions

Symbol	Parameters	Conditions	Min	Тур.	Max.	Units
17	C. D. C. I.V.I.		2.97	3.3	3.63	V
V_{DD}	Core Power Supply Voltage		2.375	2.5	2.625	V
17	Outroot Barrey Consults Walts on		2.97	3.3	3.63	V
V_{DDO}	Output Power Supply Voltage		2.375	2.5	2.625	V
***	A 1 D C 1 W 1		2.97	3.3	3.63	V
V_{DDA}	Analog Power Supply Voltage		2.375	2.5	2.625	V
I_{DD}	Power Supply Current				100	mA
I _{DDO} Power Supply Current for Outputs		All outputs loaded, Diff. outputs are LVPECL			300	mA
	All outputs loaded, Diff. outputs are LVDS			130	mA	
I_{DDA}	Analog Power Supply Current				45	mA
T_{A}	Ambient Temperature		-40		85	°C

Input Electrical Characteristics

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
R _{pu}	Internal pull up resistance			51		ΚΩ
R _{dn}	Internal pull down resistance			51		ΚΩ
C_{XTAL}	Internal capacitance on X_IN and X_OUT pins			12		pF

LVCMOS DC Electrical Characteristics

Symbol	Parameters	Conditions	Min	Тур.	Max.	Units
**	Input High Voltage	$V_{\rm DD} = 3.3 V \pm 10\%$	2		V _{DD} +0.3	V
V_{IH}		$V_{\rm DD} = 2.5 V \pm 5\%$	1.7		V _{DD} +0.3	V
	Input Low Voltage	$V_{\rm DD} = 3.3 V \pm 10\%$	-0.3		0.8	V
V_{IL}		$V_{\rm DD} = 2.5 V \pm 5\%$	-0.3		0.5	V
I _{IH}	Input High Current	V _{IN} = V _{DD max} .			150	μΑ
$I_{\rm IL}$	Input Low Current	$V_{IN} = 0V$	-150			μΑ
T_{DC}	Input Duty Cycle		35		65	%
C _{IN}	Input Capacitance			3.5		pF

Differential Input DC Characteristics

Symbol	Parameters	Conditions	Min	Тур.	Max.	Units
V_{IH}	Input High Voltage				V _{DD} - 0.7	V
V_{IL}	Input Low Voltage		V _{DD} - 2.0			V
V_{CM}	Input Bias Voltage		0.5		V _{DD} - 0.85	V
R _{IN}	Input Differential Impedance ¹		80	100	120	Ω
V _{IN-PP}	Input Differential Swing	Differential peak to peak	0.3		2.6	V

Note: 1. Differential input can be AC or DC coupled.

Crystal Characteristic

Parameters	Description	Min.	Тур	Max.	Units
OSCmode	Mode of Oscillation	Fu			
FREQ	Frequency	10	25	40	MHz
ESR ¹	Equivalent Series Resistance			50	Ω
Cload	Load Capacitance		18		pF
Cshunt	Shunt Capacitance			7	pF
	Drive Level			250	uW

Note: 1. ESR value is dependent upon frequency of oscillation $\,$

LVPECL Output DC Characteristics (1)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
V _{OPP}	Output peak-peak Voltage	Single-ended		0.78		V
V _{OH}	Output High Voltage	Outputs terminated with 50Ω to	V _{DDO} - 1.4		V _{DDO} - 0.7	V
V _{OL}	Output Low Voltage	V _{DDO} - 2V	V _{DDO} - 2.0		V _{DDO} - 1.3	V

LVDS Output DC Characteristics (1)

Symbol	Parameters	Condition	Min.	Typ.	Max.	Units
V _{OPP}	Output Peak-peak Voltage	Single-ended	0.247		0.454	V
DV _{OPP}	V _{OPP} Magnitude Change				50	mV
Vos	Output Offset Voltage		1.125		1.375	V
DV _{OS}	V _{OS} Magnitude Change				50	mV

AC Output Characteristics (see test configurations) (1)

 T_A =-40C to 85C; V_{DD} =3.3V±10%, V_{DDO} =3.3V±10%

Symbol	Parameters	Condition		Min	Тур.	Max.	Units
C	0.4.45	LVPECL				156.25	MHz
f_{OUT}	Output Frequency	LVDS				156.25	MHz
t _{R/tF}	Rise and Fall Time; 20% ~80%	LVPECL, LVDS	3		250	400	ps
t_{DC}	Duty Cycle	LVPECL, LVDS	6	48		52	%
4:	tj _{PHASE} Integrated phase jitter (RMS)	12kHz-20MHz @ 156.25MHz, 25MHz Xtal input			0.25	0.4	ps
tj _{PHASE} Integrated phase	Integrated phase jitter (RMS)	10kHz-5MHz @ Xtal input	OkHz-5MHz @ 25MHz, 25MHz tal input		0.33	0.4	ps
tj _{c-c}	Cycle to cycle jitter				28	30	ps
tj _{Pk-Pk}	Peak to Peak jitter				30	35	ps
			Offset 1kHz		-117		
		156.25MHz,	Offset 10kHz		-130		
f_N	Single-Side Band Phase Noise	25MHz Xtal	Offset 100kHz		-134		dBc/ Hz
		input	Offset 1MHz		-139		112
			Offset 10MHz		-154		

AC Output Characteristics (continued)

 T_A =-40C to 85C; V_{DD} =3.3V±10%, V_{DDO} =3.3V±10%

Symbol	Parameters	Condition	Min	Typ.	Max.	Units
		V _{DD} , 50mVpp, 10k-1.5MHz		-52		
	Power Supply Noise Rejec-	V _{DDA} , 50mVpp, 10k-1.5MHz		-65		
PSNR	tion	V _{DDO} , 50mVpp, 10k-1.5MHz		-50		dBc
t _{STARTUP}	Start time				10	ms
t _{LOCK}	PLL lock time				20	ms

Note:

1. V_{DDO} = 3.3V is not valid with V_{DD} = 2.5V

Serial Data Interface (I²C compatible)

PI6LC48S0401 is a slave only device that supports block read and block write protocol using a single 7-bit address and read/write bit as shown below.

Read and write block transfers can be stopped after any complete byte transfer.

For full electrical I2C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-up resistors have a size of $50k\Omega$ typical.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	1	1	I ² C_ADR_SEL	1/0

How to Write

1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	1 bit
Start bit	Address	W(0)	Ack	Data Byte	Ack	Data Byte	Ack	Data Byte	Ack	Stop bit
Start bit	Address	**(0)	TICK	(D)	TICK	(D+1)	nek	 (D+N)	nek	Stop bit

How to Read

1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	1 bit
Start bit	Address	R(1)	Ack	Data Byte (D)	Ack	Data Byte (D+1)	Ack	 Data Byte (D+N)	Ack	Stop bit

Output Frequency I2C bit Control Table

FS_Q (2-bit)	Output Freq.
0 0	156.25MHz
0 1	50MHz
1 0	125MHz
11	100MHz

Input Freq. I2C bit Control Table

INFREQ_SEL (2-bit)	Input Freq.
0 0	25MHz
0 1	156.25MHz
1 0	125MHz
11	100MHz

Byte 0: Output Frequency Selection Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1	
7	Reserved						
6	Reserved						
5	FS_Q (1)		RW	0	2 72 2 72		
4	FS_Q (0)	Output divider	RW	0	See FS_Q I ² C control table		
3	Reserved						
2	Reserved						
1	Vendor ID		RW	0			
0	Vendor ID		RW	0			

Byte 1: Output Frequency Selection and Misc. Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	I ² C pin control	Determine external pins or I ² C control mode	RW	0	External pins	I ² C
6	I2C_ADR_SEL	Select I ² C write address	RW	0	DC(h) DE(h)	
5	INFREQ_SEL (1)		RW	0	See INFREQ_SEL I ² C control table	
4	INFREQ_SEL (0)	Input frequency selection	RW	0		
3	Reserved					
2	Reserved					
1	Reserved					
0	Reserved					

Byte 2: Output Enable Selection

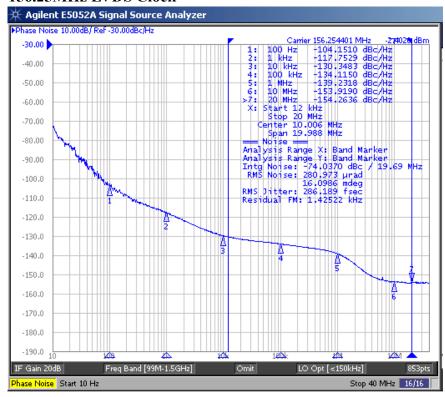
Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Reserved					
6	Reserved					
5	OE for Q4	Output enable bit for Q4	RW	0	Enable	Disable
4	OE for Q3	Output enable bit for Q3	RW	0	Enable	Disable
3	OE for Q2	Output enable bit for Q2	RW	0	Enable	Disable
2	OE for Q1	Output enable bit for Q1	RW	0	Enable	Disable
1	OE for Q0	Output enable bit for Q0	RW	0	Enable	Disable
0	Reserved					

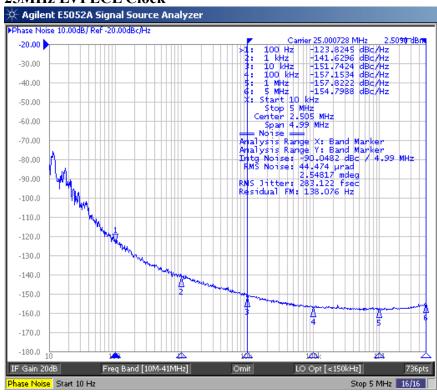
Byte 3: Reserved

Byte 4: Output Type Selection

Bit	Control Function	Description	Type	Power Up Condition	0	1
7	Reserved					
6	Reserved					
5	Q4	Output Type Select Q4	RW	0	LVPECL	LVDS
4	Q3	Output Type Select Q3	RW	0	LVPECL	LVDS
3	Q2	Output Type Select Q2	RW	0	LVPECL	LVDS
2	Q1	Output Type Select Q1	RW	0	LVPECL	LVDS
1	Q0	Output Type Select Q0	RW	0	LVPECL	LVDS
0	Reserved					

Byte 5: Misc. Register


Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Reserved					
6	Reserved					
5	Reserved					
4	Reserved					
3	PLL_BYPASS	PLL bypass function	RW	0	PLL is enabled	PLL is by- passed
2	Reserved					
1	Reserved					
0	IN_SEL	Input selection	RW	0	Crystal	Reference



Phase Noise Plots 156.25MHz LVDS Clock

25MHz LVPECL Clock

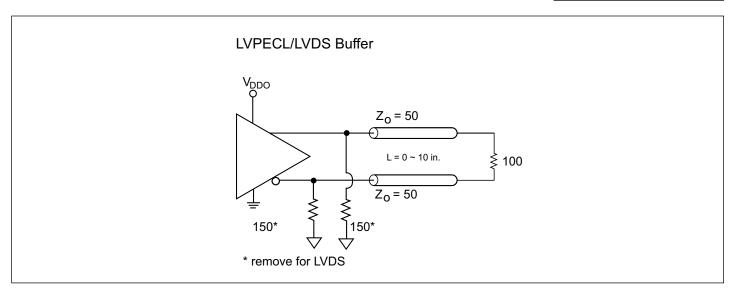
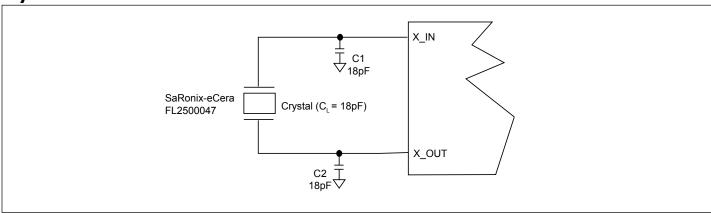


Figure 1. LVPECL and LVDS Test Circuit

Figure 2. Power Supply Filter



Crystal circuit connection

The following diagram shows PI6LC48S0401 crystal circuit connection with a parallel crystal. For the CL=18pF crystal, it is suggested to use C1=18pF, C2=18pF. C1 and C2 can be adjusted to fine tune to the target ppm of crystal oscillator according to different board layouts.

Crystal Oscillator Circuit

Crystal Circuit Oscillator

Recommended Crystal Specification

Pericom recommends:

- a) FY2500081, SMD 5x3.2(4P), 25MHz, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf
- $b) FL2500047, SMD\ 3.2x2.5(4P), 25MHz, CL=18pF, +/-20ppm, http://www.pericom.com/pdf/datasheets/se/FL.pdf$

Part Marking

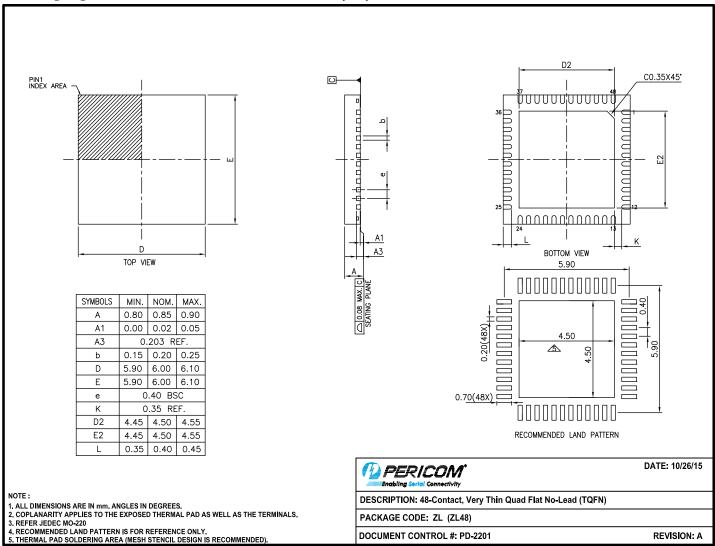
PI6LC48 S0401ZLIE YYWWXX

YY: Year

WW : Workweek
1st X : Assembly Code
2nd X : Fab Code

Note:

 $1. \ For latest \ datecode \ info, please \ check: https://www.diodes.com/assets/MediaList-Attachments/Pericom-Datecode-Format-Explanation.pdf$


www.diodes.com

Packaging Mechanical: 48-Contact TQFN (ZL)

15-0244

Note:

 $1.\ For\ latest\ package\ info,\ please\ check:\ https://www.diodes.com/design/support/packaging/pericom-packaging/per$

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description	Operating Temperature
PI6LC48S0401ZLIEX	ZL	48-Contact, Pb-free & Green (TQFN), Tape & Reel	Industrial

Notes

- 1. Thermal characteristics can be found on the company web site at https://www.diodes.com/design/support/packaging/pericom-packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated www.diodes.com