imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

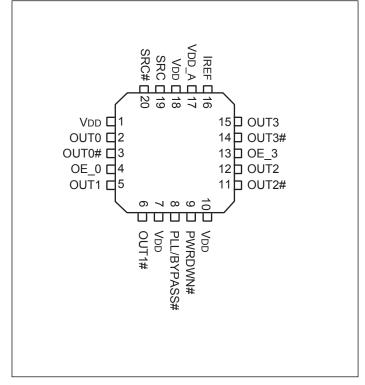
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PI6PCIEB24

1:4 PCI Express[®] Clock Driver

Features

- → Phase jitter filter for PCIe[®] 2.0 application
- → Four pairs of HCSL PCIe 2.0 Differential Clocks
- → Prop delay <± 250ps (in PLL mode)
- → Low skew < 50ps
- → Low jitter < 50ps cycle-to-cycle
- → < 1 ps additive RMS phase jitter
- → 100 MHz PLL Mode operation
- → 3.3V operation
- → Packaging (Pb-free and Green):
 - 20-Pin 4.0mm x 4.0mm x0.75mm TQFN (ZD20)


Description

Pericom Semiconductor's PI6PCIEB24 is a PCI Express[®] (PCIe) 2.0 compliant high-speed, low-noise differential clock buffer. The device distributes the input differential PCIe clock to four differential pairs of clock outputs with zero delay PLL.

Block Diagram

Pin Configuration

Pin Descriptions

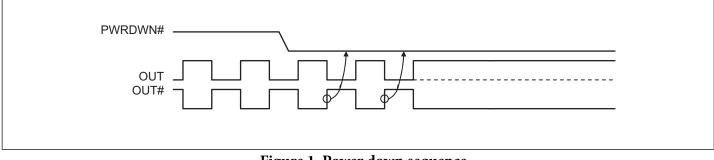
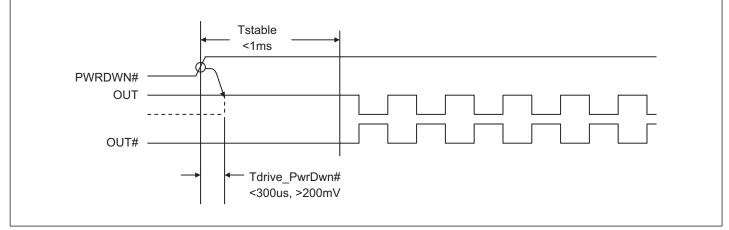
Pin Name	Туре	Pin No	Description	
SRC & SRC#	Input	19, 20	0.7V Differential SRC input from PI6C410 clock synthesizer	
OUT[0:3] & OUT[0:3]#	Output	2, 3, 5, 6, 12, 11, 15, 14	0.7V Differential outputs	
IREF	Input	16	External resistor connection to set the differential output current	
V _{DD}	Power	1, 7, 10, 18	3.3V Power Supply for Outputs	
PWRDWN#	Input	9	3.3V LVTTL active LOW input for power down operation	
VDD_A	Power	17	3.3V Power Supply for PLL	
PLL/BYPASS#	Input	8	When HIGH, PLL is enabled, When LOW, PLL is bypassed.	
OE_0, OE_3	Input	4, 13	When HIGH, enables corresponding OUT0, OUT3 respectively.	

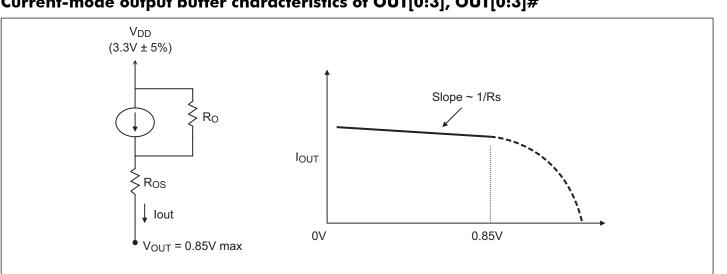
Ground connection is through the package metal plate underneath.

Functionality

PWRDWN#	OUT	OUT#
1	Normal	Normal
0	$I_{REF} \times 2$	Low

Power Down (PWRDWN# assertion)


Figure 1. Power down sequence

When PWRDWN# is asserted (Low), 2xI_{REF} current flows through OUT pin.

Power Down (PWRDWN# De-assertion)

Figure 2. Power down de-assert sequence

Current-mode output buffer characteristics of OUT[0:3], OUT[0:3]#

Differential Clock Buffer characteristics

Symbol	Minimum	Maximum
R _O	3000Ω	N/A
R _{OS}	unspecified	unspecified
V _{OUT}	N/A	850mV

Current Accuracy

Symbol	Conditions	Configuration	Load	Min.	Max.
I _{OUT}	$V_{DD} = 3.30 \pm 5\%$	$R_{\rm REF} = 475\Omega \ 1\%$ $I_{\rm REF} = 2.32 m A$	Nominal test load for given configuration	-12% I _{NOMINAL}	+12% I _{NOMINAL}

 $\mathbf{I}_{\text{NOMINAL}}$ refers to the expected current based on the configuration of the device.

Differential Clock Output Current

Board Target Trace/Term Z	Reference R, Iref = $V_{DD}/(3xRr)$	Output Current	V _{OH} @ Z
100Ω	$R_{\rm REF} = 475\Omega \ 1\%,$	I _{OH} = 6 x I _{REF}	0.7V @ 50
(100 Ω differential \approx 15% coupling ratio)	$I_{REF} = 2.32 m A$	IOH – 0 x IREF	0.7 V @ 30

Absolute Maximum Ratings (Over operating free-air temperature range)

Symbol	Parameters	Min.	Max.	Units
V _{DD_A}	3.3V Core Supply Voltage	-0.5	4.6	
V _{DD}	3.3V I/O Supply Voltage	-0.5	4.6	V
V _{IH}	Input High Voltage		4.6	
VIL	Input Low Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
V _{ESD}	ESD Protection	2000		V

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

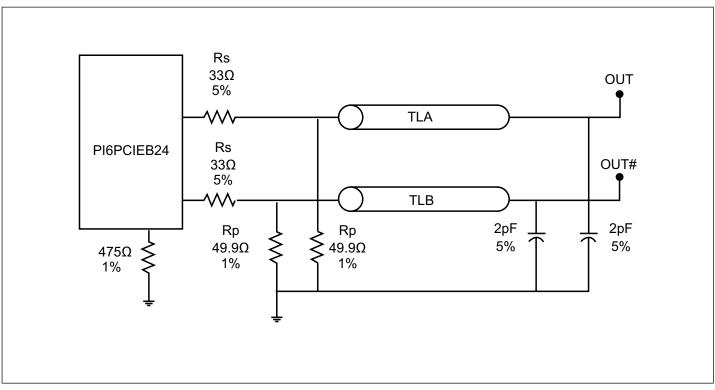
Symbol Parameters Condition M Vapper to 12.32 Core Symply Voltage 3.1 3.1

Symbol	Parameters	Condition	Min.	Max.	Units	
V _{DD_A}	3.3V Core Supply Voltage		3.135	3.465		
V _{DD}	3.3V I/O Supply Voltage		3.135	3.465	v	
V _{IH}	3.3V Input High Voltage	V _{DD}	2.0	$V_{DD} + 0.3$	V	
VIL	3.3V Input Low Voltage		V _{SS} - 0.3	0.8		
I _{IK}	Input Leakage Current	$0 < V_{IN} < V_{DD}$	-5	+5	μA	
I O I	Nutnut High Current	$I_{OH} = 6 \text{ x } I_{REF},$	12.2		mA	
I _{OH} Output High Current		$I_{REF} = 2.32 m A$		15.6	— mA	
C _{IN}	Input Pin Capacitance		3	5	nE	
C _{OUT}	Output Pin Capacitance			6	pF	
L _{PIN}	Pin Inductance			7	nH	
I _{DD}	Power Supply Current $V_{DD} = 3.465 V$, $F_{CPU} = 100 MHz$ 200		200			
ISS	Power Down Current	Driven outputs		40	mA	
T _A	Ambient Temperature		-45	85	°C	

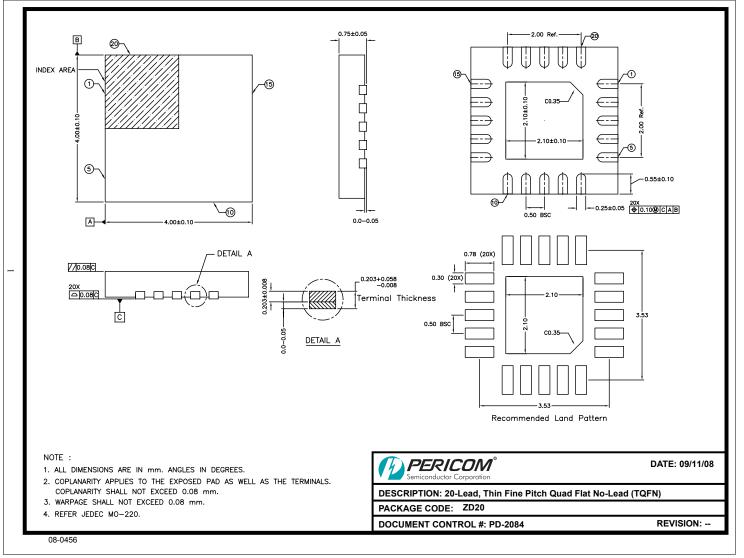
Symbol	Parameters	Min	Max.	Units	Notes
F _{IN}		95	105	MHz	
T _{rise} / T _{fall}	Rise and Fall Time (measured between 0.175V to 0.525V)	175	700	ps	2
DT (DT	Rise and Fall Time Variation		125	ps	2
DT _{rise} / DT _{fall}	Rise/Fall Matching		20	%	2
T _{pd}	PLL Mode (PLL/BYPASS# = 1)		±250	ps	
T _{jitter}	Cycle – Cycle Jitter		50	ps	3, 4
V _{HIGH}	Voltage High including overshoot	660	1150	mV	2
VLOW	Voltage Low including undershoot	-300		mV	2
V _{cross}	Absolute crossing point voltages	250	550	mV	2
ΔV _{cross}	Total Variation of Vcross over all edges		140	mV	2
T _{DC}	Duty Cycle	45	55	%	3
T _{jadd}	Additive RMS phase jitter for PCIe GenII	<0	1	ps	5
T _{pd(bypass)}	Bypass mode (PLL/BYPASS# = 0)	2.5	6.5	ns	

AC Switching Characteristics (V_DD = $3.3\pm5\%$, VDD_A = $3.3\pm5\%$)

1. Test configuration is $R_s = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.


2. Measurement taken from Single Ended waveform.

3. Measurement taken from Differential waveform.


4. Measurement taken using M1 data capture analysis tool.

5. Additive jitter is calculated from input and output RMS phase jitter using PCIe 2.0 filter by $T_{jadd} = \sqrt{(output jitter)^2 - (input jitter)^2}$

Configuration Test Load Board Termination

Packaging Mechanical: 20-Pin TQFN (ZD)

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description
PI6PCIEB24ZDE	ZD	20-pin, 4.0mm x 4.0mm, TQFN, Pb-Free and Green

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

2. E = Pb-free and Green

3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336