imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

Common Features

- High-speed, low-power devices with high-current drive $V_{CC}=5V\pm10\%$
- Hysteresis on all inputs
- Device models available upon request

PI74FCT16244T Features

- High output drive: $I_{OH} = -32mA$; $I_{OL} = 64mA$
- Power off disable outputs permit "live insertion"
- Typical V_{OLP} (Output Ground Bounce) < 1.0V at V_{CC} = 5V, T_A = 25°C

PI74FCT162244T Features

- Balanced output drivers: ±24mA
- · Reduced system switching noise
- Typical VOLP (Output Ground Bounce) $< 0.6V \text{ at } V_{CC} = 5V, T_A = 25^{\circ}C$
- Packaging (Pb-free & Green available):
 - 48-pin 240-mil wide plastic TSSOP(A)
 - 48-pin 300-mil wide plastic SSOP(V)
 - 48-pin 173-mil wide plastic TVSOP(K)

Fast CMOS 16-Bit Buffer/Line Drivers

Description

Pericom Semiconductor's PI74FCT16244T and PI74FCT162244T are non-inverting 16-bit buffer/line drivers designed for applications driving high capacitance loads and low impedance backplanes. These high-speed, low power devices offer bus/ backplane interface capability and a flow-through organization for ease of board layout. These devices are designed with threestate controls to operate in a Quad-Nibble, Dual-Byte, or a single 16-bit word mode.

The PI74FCT16244T output buffers are designed with a Power-Off disable allowing "live insertion" of boards when used as backplane drivers.

The PI74FCT162244T has \pm 24mA balanced output drivers. It is designed with current limiting resistors at its outputs to control the output edge rate resulting in lower ground bounce and undershoot. This eliminates the need for external terminating resistors for most interface applications.

Product Pin Description

Pin Name	Description
xOE	3-State Output Enable Inputs (Active LOW)
xAx	Inputs ⁽¹⁾
xYx	3-State Outputs
GND	Ground
Vcc	Power

Truth Table

Inpu	Outputs ⁽¹⁾	
xOE	xAx	xYx
L	L	L
L	Н	Н
Н	Х	Z

Note:

 H = High Voltage Level, X = Don't Care, L = Low Voltage Level, Z = High Impedance

Pin Configuration

10E	10	48 20E
1Y0 🗖	2	47 🗖 1A0
1Y1 🗖	3	46 🗖 1A1
GND 🗖	4	45 GND
1Y2 🗖	5	44 🗖 1A2
1Y3 🗖	6	43 🗖 1A3
	7	42 VCC
2Y0 🗖	8	41 🗖 2A0
2Y1 🗖	9	40 2A1
GND 🗖	10	
2Y2 🗖	11	38 🗖 2A2
2Y3 🗖	12	37 🗖 2A3
3Y0 🗖	13	36 🗖 3A0
3Y1 🗖	14	35 🗖 3A1
GND 🗖	15	34 GND
3Y2 🗖	16	33 🗖 3A2
3Y3 🗖	17	32 🗖 3A3
	18	
4Y0 🗖	19	30 🗖 4A0
4Y1 🗖	20	29 4A1
GND 🗖	21	28 GND
4Y2 🗖	22	27 🗖 4A2
4Y3 🗖	23	26 🗖 4A3
40E 🗖	24	25 30E
I		

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Note:

DC Electrical Characteristics (Over the Operating Range, TA = -40°C to +85°C, VCC = 5.0V±10%)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	
VIH	Input HIGH Voltage	Guaranteed Logic HIGH Level		2.0			V
VIL	Input LOW Voltage	Guaranteed Logic LOW Level				0.8	V
Iih	Input HIGH Current	Standard Input, Vcc=Max.	VIN=VCC			1	μΑ
Iih	Input HIGH Current	Standard I/O, Vcc=Max.	VIN=VCC			1	μΑ
IIL	Input LOW Current	Standard Input, Vcc=Min. VIN=GND				-1	μΑ
IIL	Input LOW Current	Standard I/O, Vcc=Min. VIN=GND				-1	μΑ
Іодн	High Impedance	Vcc=Max.	Vout=2.7V			1	μΑ
Iozl	Output Current	Vcc=Max.	Vout=0.5V			-1	μΑ
Vik	Clamp Diode Voltage	Vcc=Min., IIN=-18mA			-0.7	-1.2	V
Ios	Short Circuit Current	Vcc=Max. ⁽³⁾ , Vout=GND		-80	-140	-320	mA
Io	Output Drive Current	$V_{CC}=Max.^{(3)}, V_{OUT}=2.5V$		-50		-180	mA
VH	Input Hysteresis				100		mV

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

PI74FCT16244T Output Drive Characteristics (Over the Operating Range)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	
Voh	Output HIGH Voltage	Vcc=Min., VIN=VIH or VIL	Iон=-3.0mA	2.5	3.5		V
			Iон=-15.0mA	2.4	3.5		
			Iон = -32.0mA	2.0	3.0		
Vol	Output LOW Voltage	$V_{CC} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	IOL = 64mA		0.2	0.55	V
IOFF	Power Down Disable	Vcc=0V, VIN or Vout-4.5V				±100	μA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient and maximum loading.

PI74FCT162244T Output Drive Characteristics (Over the Operating Range)

Parameters	Description	Test Conditions ⁽¹⁾			Typ. ⁽²⁾	Max.	Units
Voh	Output HIGH Voltage	Vcc=Min., VIN=VIH or VIL IOH=-24.0mA		2.4	3.3		V
Vol	Output LOW Voltage	Vcc=Min., VIN=VIH or VIL	IoL=24mA		0.3	0.55	V
Iodl	Output LOW Current	$V_{CC}=5V, V_{IN}=V_{IH OR} V_{IL}, V_{OUT}=1.5V^{(3)}$			115	150	mA
Iodh	Output HIGH Current	$V_{CC}=5V, V_{IN}=V_{IH OR} V_{IL}, V_{OUT}=1.5V^{(3)}$			-115	-160	mA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

- 2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

Capacitance (TA=25°C, f=1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
Cin	Input Capacitance	$V_{IN}=0V$	4.5	7.5	pF
Cout	Output Capacitance	Vout=0V	5.5	8	pF

Notes:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditio	ons ⁽¹⁾	Min.	Typ ⁽²⁾	Max.	Units
Icc	Quiescent Power Supply Current	Vcc = Max.	$V_{IN} = GND \text{ or } V_{CC}$		0.1	500	μΑ
ΔΙcc	Supply Current per Input @ TTL HIGH	$V_{CC} = Max.$	$V_{IN} = 3.4 V^{(3)}$		0.5	1.5	mA
Ісср	Supply Current per Input per MHz ⁽⁴⁾	Vcc = Max., Outputs Open $x\overline{OE} = GND$ One Bit Toggling 50% Duty Cycle	$V_{IN} = V_{CC}$ $V_{IN} = GND$		60	100	μA/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max., Outputs Open fi = 10 MHz 50% Duty Cycle $x\overline{OE} = GND$	$V_{IN} = V_{CC}$ $V_{IN} = GND$		0.6	1.5 ⁽⁵⁾	mA
		One Bit Toggling	$V_{IN} = 3.4V$ $V_{IN} = GND$		0.9	2.3 ⁽⁵⁾	
		Vcc = Max., Outputs Open fi = 2.5 MHz 50% Duty Cycle $x\overline{OE} = GND$	$V_{IN} = V_{CC}$ $V_{IN} = GND$		2.4	4.5 ⁽⁵⁾	
		16 Bits Toggling	$V_{IN} = 3.4V$ $V_{IN} = GND$		6.4	16.5 ⁽⁵⁾	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at Vcc or GND.

- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC =IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2 + fiNI)$

 Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)

- D_H = Duty Cycle for TTL Inputs High
- NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Input Frequency

NI = Number of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

Output Enable Time

Output Disable Time(2)

 $x\overline{OE}$ to xYx

xOE to xYx Output Skew⁽³⁾ Units ns

ns

ns

ns

	e			•		0	0			
			162	44T	1624	4AT	1624	4CT	1624	4ET
			Co	om.	Co	m.	Co	om.	Co	m.
Parameters	Description	Conditions	Min	Max	Min	Max	Min	Max	Min	Max
tplh	Propagation Delay ⁽¹⁾	$C_L = 50 pF$	1.5	6.5	1.5	4.8	1.5	4.1	1.5	3.2
t PHL	xAx to xYx	$R_L = 500\Omega$								

1.5

1.5

8.0

7.0

0.5

1.5

1.5

6.2

5.6

0.5

1.5

1.5

5.8

5.2

0.5

1.5

1.5

4.4

4.3

0.5

PI74FCT16244T Switching Characteristics over Operating Range

Notes:

tpzh

tPZL

tphz

tplz

tsk(o)

1. Minimum limits are guaranteed but not tested on Propagation Delays.

2. This parameter is guaranteed but not production tested.

3. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

PI74FCT162244T Switching Characteristics over Operating Range

			1622	244T	1622	44AT	1622	44CT	1622	44ET	
			Co	om.	Co	m.	Co	om.	Co	om.	
Parameters	Description	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Units
tplh	Propagation Delay ⁽¹⁾	$C_L = 50 pF$	1.5	6.5	1.5	4.8	1.5	4.1	1.5	3.2	ns
t phl	xAx to xYx	$R_L=500\Omega$									
tрzн	Output Enable Time		1.5	8.0	1.5	6.2	1.5	5.8	1.5	4.4	ns
t PZL	$x\overline{OE}$ to xYx										
tphz.	Output Disable Time ⁽²⁾		1.5	7.0	1.5	5.6	1.5	5.2	1.5	4.0	ns
tplz.	$x\overline{OE}$ to xYx										
tsk(o)	Output Skew ⁽³⁾			0.5		0.5		0.5		0.5	ns

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

2. This parameter is guaranteed but not production tested.

3. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

Packaging Mechanical: 48-Pin, 240 mil wide Plastic TSSOP (A)

Packaging Mechanical: 48-pin 300 mil wide plastic SSOP (V)

PI74FCT162244T Ordering Information

Ordering Code	Package Code	Speed Grade	Package Type
PI74FCT162244TAE	А	Blank	Pb-free & Green, 48-pin 240-mil wide TSSOP
PI74FCT162244CTV	V	С	48-pin 300-mil wide SSOP
PI74FCT162244CTA	А	С	48-pin 240-mil wide TSSOP
PI74FCT162244ATV	V	А	48-pin 300-mil wide SSOP

Notes:

· Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

- E = Pb-free & Green
- Adding an X suffix = Tape/Reel

Part Marking Information

Pericom's standard product mark follows our standard part number ordering information, except for those products with a speed letter code. For marking purposes, the speed letter code mark is placed after the package code letter, rather than after the device number as it is ordered.

Although all products are marked immediately after assembly to assure material traceability, Pericom does not usually mark the speed code at that time. After electrical test screening and speed binning have been completed, we then perform an "add mark" operation which places the speed code letter at the end of the complete part number.

Please refer to the example shown below:

• Part Number as ordered: PI74FCT245ATQ

• Example of Part Number as marked:

Notes:

1) 8-pin DIP, 8-pin SOIC, 8-pin TSSOP, 14-pin SOIC, 16-pin QSOP, SC70, MSOP, and SOT23 packages are not marked with the Pericom logo due to space limitations on the package.

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com