

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

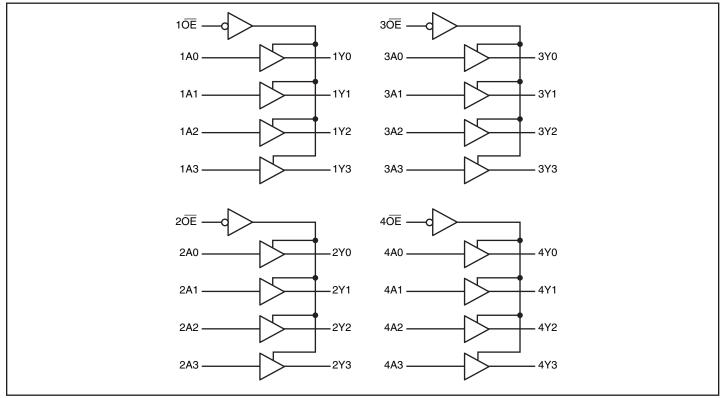
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Fast CMOS 3.3V 16-Bit Buffer/Line Driver

Features


- Functionally compatible with FCT3, LVT, and 74 series 16244 families of products
- 3-State outputs
- 5V Tolerant inputs and outputs
- 2.0V 3.6V V_{DD} supply operation
- Balanced sink and source output drives (24mA)
- · Low ground bounce outputs
- · Power Down High Impedance inputs and outputs
- Supports live insertion
- ESD Protection exceeds 2000V, Human Body Model 200V, Machine Model
- Packaging (Pb-free & Green Available):
 - 48-pin 300-mil wide plastic SSOP (V)
 - 48-pin 240-mil wide plastic TSSOP (A)

Description

Pericom Semiconductor's PI74LCX16244 is a 16-bit buffer/line driver designed for driving memory loads. With its balanced-drive characteristics, this high-speed, low power device provides lower ground bounce, transmission line matching of signals, fewer line reflections and lower EMI and RFI effects. This makes it ideal for driving on-board buses and transmission lines. This device is designed with three-state controls to operate in a Quad-Nibble, Dual-Byte, or a single 16-bit word mode.

The PI74LCX16244 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3V/5.0V system.

Block Diagram

09-0005 1 PS2087H 11/10/09

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
Ambient Temperature with Power Applied40°C to +85°C
Supply Voltage to Ground Potential (Inputs & $V_{DD} \ \mbox{Only})0.5 V$ to +7.0 V
Supply Voltage to Ground Potential (Outputs & D/O Only) $-0.5V$ to $+7.0V$
DC Input Voltage0.5V to +7.0V
DC Output Current
Power Dissipation 1.0W
1

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Parameter		Min.	Max.	Units	
V	Cumply Voltage	Operating	2.0	3.6	
V_{DD}	Supply Voltage	Data Retention	1.5	3.6	
V_{I}	Input Voltage		0	5.5	V
W.	Output Voltage	HIGH or LOW state	0	V_{DD}	
V_{O}		3-state	0	5.5	
T/T	Output Current	$V_{DD} = 3.0V - 3.6V$		±24	A
I_{OH}/I_{OH}		$V_{\rm DD} = 2.7 V$		±12	mA
$T_{\mathbf{A}}$	Operating Temperature		-40	85	°C
$\Delta t/\Delta V$	Input Edge Rate	$V = 0.8V - 2.0V, V_{DD} = 3.0V$	0	10	ns/V

Pin Description

Pin Name	Description
$_{X}\overline{OE}$	3-State Output Enable Inputs (Active LOW)
χΑχ	Inputs
xYx	3-State Outputs
GND	Ground
V_{DD}	Power

${\bf Truth}\;{\bf Table}^{(1)}$

Inp	Output	
$_{X}\overline{OE}$	$_{\mathbf{X}}\mathbf{A}_{\mathbf{X}}$	$_{\mathbf{X}}\mathbf{Y}_{\mathbf{X}}$
L	L	L
L	Н	Н
Н	X	Z

Notes:

H = High Voltage Level, X = Don't Care,
 L = Low Voltage Level, Z = High Impedance

Pin Configuration

1 III Comigurati	1011	
== -		
1OE [1	48 🛘 2OE
1Y0 □	2	47 🛘 1A0
1Y1 □	3	46 🛘 1A1
GND [4	45 GND
1Y2 🗆	5	44 🛘 1A2
1 Y 3 □	6	43 🗆 1A3
VDD [7	42 VDD
2Y0 🗆	8	41 2A0
2Y1 🗆	9	40 🛘 2A1
GND [10	39 GND
2 Y 2 [11	38 🛘 2A2
2 Y 3 🗆	12	37 🛘 2 A 3
3 Y 0 □	13	36 🗆 3A0
3 Y 1 □	14	35 🛘 3A1
GND [15	34 GND
3 Y 2 □	16	33 🛘 3A2
3 Y 3 □	17	32 🛘 3A3
VDD [18	31 DVDD
4 Y 0 □	19	30 🗆 4A0
4Y1 □	20	29 🗆 4A1
GND [21	28 GND
4 Y 2 □	22	27 🛘 4A2
4 Y 3 □	23	26 🗆 4A3
4 0E □	24	25 3OE
		

DC Electrical Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{DD} = 2.7$ V to 3.6V)

Parameters	Description	Test Co	onditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level		2.0			
V_{IL}	Input LOW Voltage	Guaranteed Logic 1	LOWLevel			0.8	
		$V_{\rm DD} = 2.7 - 3.6$	$I_{OH} = -0.1 \text{mA}$	V _{DD} -0.2			
V	Output HICH Voltage	$V_{DD} = 2.7$	$I_{OH} = -12mA$	2.2			
V _{OH}	Output HIGH Voltage	$V_{DD} = 3.0$	$I_{OH} = -18mA$	2.4			
		VDD - 3.0	$I_{OH} = -24mA$	2.2			V
		$V_{\rm DD} = 2.7 - 3.6$	$I_{OL} = 0.1 \text{mA}$			0.2	
W	Output LOW Voltage	$V_{\rm DD} = 2.7$	$I_{OL} = 12mA$			0.4	
V_{OL}		$V_{DD} = 3.0$ $I_{OL} = 16 \text{mA}$	$I_{OL} = 16mA$			0.4	
			$I_{OL} = 24mA$			0.55	
V_{IK}	Clamp Dioide Voltage	$V_{DD} = Min., I_{IN} = -18mA$			-0.7	-1.2	
I_{I}	Input Leakage Current	$0 \le V_I \le 5.5V$	$V_{DD} = 2.7 - 3.6$			±5	
I_{OZ}	Tri-State Output Leakage	$0 \le V_O \le 5.5V$ V _I = V _{IH} or V _{IL}	$V_{DD} = 2.7 - 3.6$			±5	
I _{OFF}	Power Down Disable	$V_{DD} = 0V$, V_{IN} or $V_{OUT} \le 5.5V$				10	μΑ
I_{DD}	Quiescent Power supply current	$V_{DD} = Max.$ $V_{IN} = GND \text{ or } V_{DD}$			0.1	10	
$\Delta I_{ m DD}$	Quiescent Power supply current TTL Inputs High	$V_{DD} = Max.$	$V_{IN} = V_{DD} = 0.6V^{(3)}$			500	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 3.3V$, +25°C ambient.
- 3. Per TTL driven input; all other inputs at V_{DD} or GND.

Capacitance

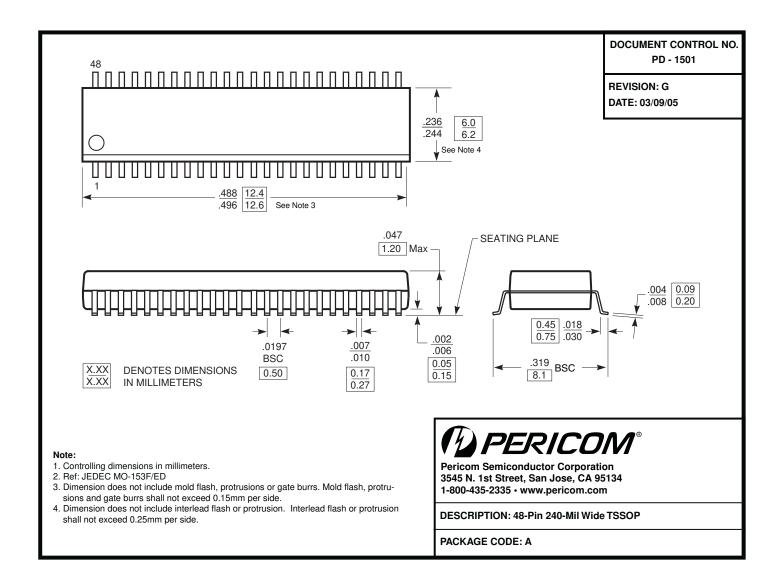
Parameters	Description	Test Conditions	Тур.	Units
C_{IN}	Input Capacitance	$V_{DD} = Open, V_I = 0V \text{ or } V_{DD}$	3	
C _{OUT}	Output Capacitance	$V_{DD} = 3.3V, V_{I} = 0V \text{ or } V_{DD}$	3	pF
C_{PD}	Power Dissipation Capacitance	$V_{DD} = 3.3V$, $V_{I} = 0V$ or V_{DD} , $F = 10$ MHz	20	

Switching Characteristics over Operating Range

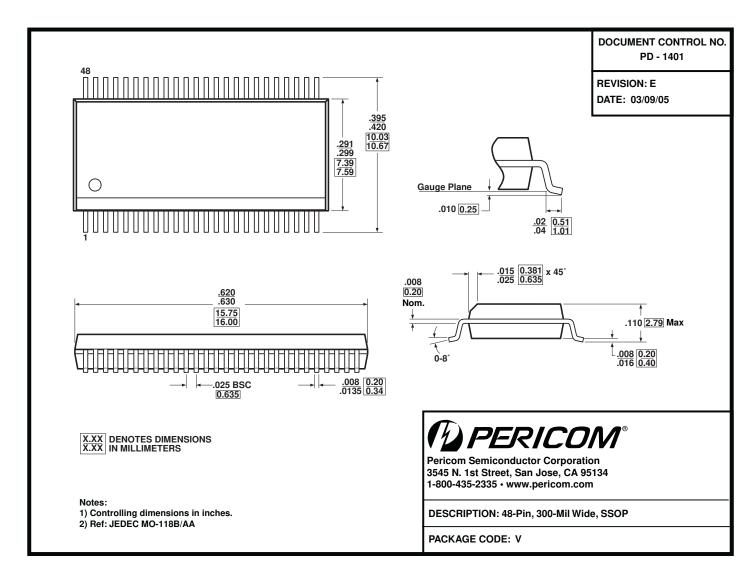
Parameters	rs Description	Test Conditions	$V_{\rm DD} = 3.3 \rm V \pm 0.3$		$V_{\mathrm{DD}} = 2.7\mathrm{V}$		Units
rarameters			Min.	Max.	Min.	Max.	
t_{PHL}	Propagation Delay, D _{XX} to O _{XX}		1.5	4.5	1.5	5.2	
t_{PZH}	Output Enable time	$C_L = 50 pF$	1.5	5.5	1.5	6.3	,,,
t _{PHZ}	Output Disable time	$R_L = 500\Omega$	1.5	5.4	1.5	5.7	ns
$t_{sk(0)}$	Output Skew ⁽¹⁾			1.0			

Notes:

Dynamic Switching Characteristics $(T_A = +25^{\circ}C)$


Parameters	Description	Test Conditions ⁽¹⁾	Тур.	Units
V_{OLP}	Dynamic LOW peak voltage	$V_{DD} = 3.3 \text{V}, C_L = 50 \text{pF},$	0.8	V
V _{OLV}	Dynamic LOW valley voltage	$V_{IH} = 3.3V, V_{IL} = 0V$	0.8	V

Notes:


1. Measured with 15 outputs switching from High-to-Low or Low-to-High. The remaining output is measured in the LOW state.

^{1.} Skew between any two outputs, of the same package, switching in the same direction.

Note:

 $\bullet \quad \text{For latest package info, please check: } \\ \text{http://www.pericom.com/products/packaging/mechanicals.php}$

Ordering Information

Ordering Code	Package Code	Package Description
PI74LCX16244AEX	A	Pb-free & Green, 48-pin 240 mil wide Plastic TSSOP
PI74LCX16244VEX	V	Pb-free & Green, 48-pin 300-mil wide plastic SSOP

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free & Green
- Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com