: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Fast CMOS 3.3V 16-Bit Register (3-State)

Product Features

- Functionally compatible with FCT3, LVT, and 74 series 16374 families of products
- 3-state outputs
- 5 V Tolerant inputs and outputs
- $2.0 \mathrm{~V}-3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ supply operation
- Balanced sink and source output drives (24 mA)
- Low ground bounce outputs
- Power down High Impedance inputs and outputs
- Supports live insertion
- ESD Protection exceeds 2000V, Human Body Model

200V, Machine Model

- Packaging (Pb -free \& Green available):
- 48-pin 240-mil wide plastic TSSOP (A)
- 48-pin 300-mil wide plastic SSOP (V)

Product Description

The PI74LCX16374 is a 16-bit octal register designed with 16 D-type flip-flops with a buffered common clock and 3-state outputs. The Output Enable ($\mathrm{x} \overline{\mathrm{OE} \text {) and clock (} \mathrm{xCLK} \text {) controls are organized }}$ to operate as two 8 -bit registers or one 16 -bit register. When $\overline{\mathrm{OE}}$ is HIGH , the outputs are in the high impedance state. Input data meeting the setup and hold time requirements of the D inputs is transferred to the O outputs on the LOW-to-HIGH transition of the clock input. The PI74LCX16374 can be driven from either 3.3 V or 5.0 V devices allowing this device to be used as a translator in a mixed $3.3 / 5.0 \mathrm{~V}$ system.

Logic Block Diagram

Product Pin Description

Pin Name	Description
$x \overline{O E}$	3-State Output Enable Inputs (Active LOW)
xCLK	Clock Inputs
xDx	Data Inputs
xOx	3-State Outputs
GND	Ground
V_{DD}	Power

Truth Table

Function	Inputs $^{(1)}$			Outputs $^{(1)}$
	xDx	xCLK	$\mathrm{x} \overline{\mathrm{OE}}$	xOx
High -Z	X	L	H	Z
	X	H	H	Z
	L	\uparrow	L	L
	H	\uparrow	L	H
	L	\uparrow	H	Z
	H	\uparrow	H	Z
	X	H or L	L	O_{0}

Note:

1. $\mathrm{H}=$ High Voltage Level, $\mathrm{X}=$ Don't Care,

L = Low Voltage Level, Z = High Impedance

Product Pin Configuration

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Parameter	Description		Min.	Max.	Units
V_{DD}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	
V_{I}	Input Voltage		0	5.5	
V_{0}	Output Voltage	HIGH or LOW state	0	V_{DD}	
		3-state	0	5.5	
$\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OH}}$	Output Current	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$		± 24	mA
		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		± 12	
T_{A}	Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate	$\mathrm{V}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	0	10	ns/V

DC Electrical Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V)

Parameters	Description	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level		2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Logic LOWLevel				0.8	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{DD}}=2.7$ - 3.6	$\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.2$			
		$\mathrm{V}_{\mathrm{DD}}=2.7$	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2			
		$\mathrm{V}_{\mathrm{DD}}=3.0$	$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4			
			$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{DD}}=2.7-3.6$	$\mathrm{I}_{\mathrm{OL}}=0.1 \mathrm{~mA}$			0.2	
		$\mathrm{V}_{\mathrm{DD}}=2.7$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$			0.4	
		$\mathrm{V}_{\mathrm{DD}}=3.0$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.4	
			$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.55	
$\mathrm{V}_{\text {IK }}$	Clamp Dioide Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Min., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$			-0.7	-1.2	
I	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{I}} \leq 5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=2.7-3.6$			± 5	$\mu \mathrm{A}$
I_{OZ}	Tri-State Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=2.7-3.6$			± 5	
$\mathrm{I}_{\text {OFF }}$	Power Down Disable	$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}$ or $\mathrm{V}_{\mathrm{OUT}} \leq 5.5 \mathrm{~V}$				10	
I_{DD}	Quiescent Power supply current	$\mathrm{V}_{\mathrm{DD}}=$ Max.	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{DD}		0.1	10	
$\Delta \mathrm{I}_{\mathrm{DD}}$	Quiescent Power supply current TTL Inputs High	$\mathrm{V}_{\mathrm{DD}}=$ Max.	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}=0.6 \mathrm{~V}^{(3)}$			500	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input; all other inputs at V_{DD} or GND.

Capacitance

Parameters	Description	Test Conditions	Typ.	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{DD}}=$ Open, $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{DD}	3	
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{DD}	3	
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{F}=10 \mathrm{MHz}$	pF	

Switching Characteristics over Operating Range

Parameters	Description	Test Conditions	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 0.3$		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		Units
			Min.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$	170				MHz
$\begin{array}{\|l} \mathrm{t}_{\mathrm{PHL}} \\ \mathrm{t}_{\mathrm{PLH}} \\ \hline \end{array}$	Propagation Delay CP to On		1.5	6.2	1.5	6.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \\ & \hline \end{aligned}$	Output Enable time		1.5	6.1	1.5	6.3	
$\begin{array}{\|l} \mathrm{t}_{\mathrm{PLZ}} \\ \mathrm{t}_{\mathrm{PHZ}} \\ \hline \end{array}$	Output Disable time		1.5	6.0	1.5	6.2	
t_{s}	Setup Time		2.5		2.5		
t_{H}	Hold Time		1.5		1.5		
t_{w}	Pulse Width		3.0		3.0		
$\mathrm{t}_{\text {sk(0) }}$	Output to Output Skew ${ }^{(1)}$			1.0			

Notes:

1. Skew between any two outputs, of the same package, switching in the same direction.

Dynamic Switching Characteristics $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Parameters	Description	Test Conditions ${ }^{(1)}$	Typ.	Units
$\mathrm{V}_{\text {OLP }}$	Dynamic LOW peak voltage	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	0.8	V
$\mathrm{~V}_{\mathrm{OLV}}$	Dynamic LOW valley voltage	$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		

1. Measured with $\mathrm{n}-1$ outputs switching from High-to-Low or Low-to-High. The remaining output is measured in the LOW state.

Notes:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI74LPT16374AAEX	A	Pb-free \& Green, 48-Pin 240-mil wide Plastic TSSOP (A)
PI74LPT16374AEX	A	Pb-free \& Green, 48-Pin 240-mil wide Plastic TSSOP (A)
PI74LPT16374CAEX	A	Pb-free \& Green, 48-Pin 240-mil wide Plastic TSSOP (A)
PI74LPT16374CVEX	V	Pb-free \& Green, 48-Pin 300-mil wide Plastic SSOP (V)
PI74LPT16374VEX	V	Pb-free \& Green, 48-Pin 300-mil wide Plastic SSOP (V)

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- Adding an X suffix = Tape/Reel

