: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Product Features

- Compatible with $\mathrm{LCX}^{\mathrm{TM}}$ and $\mathrm{LVT}^{\mathrm{TM}}$ families of products
- Supports 5V Tolerant Mixed Signal Mode Operation - Input can be 3 V or 5 V
- Output can be 3 V or connected to 5 V bus
- Advanced Low Power CMOS Operation
- Excellent output drive capability:

Balanced drives (24 mA sink and source)

- Low ground bounce outputs
- Hysteresis on all inputs
- Industrial operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Packages available:
-20-pin 173 mil wide plastic TSSOP(L)
-20-pin 150 mil wide plastic $\mathrm{QSOP}(\mathrm{Q})$
-20 -pin 150 mil wide plastic TQSOP (R)
-20-pin 300 mil wide plastic SOIC(S)

Product Description

Pericom Semiconductor's PI74LPT series of logic circuits are produced in the Company's advanced 0.6 micron CMOS technology, achieving industry leading speed grades.
The PI74LPT373 is an 8-bit transparent latch designed with 3 -state outputs and is intended for bus oriented applications. When Latch Enable (LE) is HIGH, the flip-flops appear transparent to the data. The data that meets the set-up time when LE is LOW is latched. When $\overline{\mathrm{OE}}$ is HIGH, the bus output is in the high impedance state.
The PI74LPT373 can be driven from either 3.3V or 5.0 V devices allowing this device to be used as a translator in a mixed $3.3 / 5.0 \mathrm{~V}$ system.

Product Pin Configuration

Product Pin Description

Pin Name	Description
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)
LE	Latch Enable Input (Active HIGH)
D7-D0	Data Inputs
O7-O0	3-State Outputs
GND	Ground
Vcc	Power

Note:

[^0]
Truth Table ${ }^{(1)}$

Inputs			
$\mathbf{D N}_{\mathbf{N}}$	$\mathbf{L E}$	$\overline{\mathbf{O E}}$	Outputs
H	H	L	ON
L	H	L	L
X	X	H	Z
X	L	L	O_{0}

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Ambient Temperature with Power Applied $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$Supply Voltage to Ground Potential (Inputs \& Vcc Only) 0.5 V to +7.0 VSupply Voltage to Ground Potential (Outputs \& D/O Only) -0.5 V to +7.0 VDC Input Voltage ... -0.5 V to +7.0 VDC Output Current .. 120 mA	

Abstract

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=2.7 \mathrm{~V}$ to 3.6 V)

Parameters	Description	Test Conditions ${ }^{(1)}$		Min.	Typ ${ }^{(2)}$	Max.	Units
VIH	Input HIGH Voltage (Input pins)	Guaranteed Logic HIGH Level		2.2	-	5.5	V
	Input HIGH Voltage (I/O pins)			2.0	-	5.5	V
VIL	Input LOW Voltage (Input and I/O pins)	Guaranteed Logic LOW Level		-0.5	-	0.8	V
ІІн	Input HIGH Current (Input pins)	VCC $=$ Max.	VIN $=5.5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
	Input HIGH Current (I/O pins)	Vcc $=$ Max.	VIN $=$ Vcc	-	-	± 1	$\mu \mathrm{A}$
IIL	Input LOW Current (Input pins)	Vcc $=$ Max.	VIN = GND	-	-	± 1	$\mu \mathrm{A}$
	Input LOW Current (I/O pins)	VCC $=$ Max.	VIN $=$ GND	-	-	± 1	$\mu \mathrm{A}$
IozH	High Impedance Output Current (3-State Output pins)	$\mathrm{Vcc}=\mathrm{Max}$.	Vout $=5.5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
Iozl		$\mathrm{Vcc}=\mathrm{Max}$.	Vout = GND	-	-	± 1	$\mu \mathrm{A}$
VIK	Clamp Diode Voltage	Vcc $=$ Min., $\mathrm{IIN}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
IodH	Output HIGH Current	$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V}$, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}, \mathrm{Vo}=1.5 \mathrm{~V}^{(3)}$		-36	-60	-110	mA
IodL	Output LOW Current	$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}, \mathrm{Vo}=1.5 \mathrm{~V}^{(3)}$		50	90	200	mA
VoH	Output HIGH Voltage	$\begin{aligned} & \text { VCC }=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	IOH $=-0.1 \mathrm{~mA}$	Vcc-0.2	-	-	V
			$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.0	-	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & \mathrm{IOH}=-8 \mathrm{~mA} \\ & \mathrm{IOH}=-24 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2.4^{(5)} \\ 2.0 \end{gathered}$	3.0	-	V
Vol	Output LOW Voltage	$\begin{aligned} & \text { VCC }=\text { Min. } \\ & \text { VIN }_{\text {IN }} \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	IoL $=0.1 \mathrm{~mA}$	-	-	0.2	V
			IoL $=16 \mathrm{~mA}$	-	0.2	0.4	V
			IoL $=24 \mathrm{~mA}$	-	0.3	0.5	V
Ios	Short Circuit Current ${ }^{(4)}$	Vcc $=$ Max. ${ }^{(3)}$, Vout $=$ GND		-60	-85	-240	mA
Ioff	Power Down Disable	Vcc $=0 \mathrm{~V}$, Vin or Vout $\leq 4.5 \mathrm{~V}$		-	-	± 100	$\mu \mathrm{A}$
Vh	Input Hysteresis			-	150	-	mV

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. This parameter is guaranteed but not tested.
5. $\mathrm{Voh}=\mathrm{Vcc}-0.6 \mathrm{~V}$ at rated current.

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right.$)

Parameters $^{(1)}$	Description	Test Conditions	Typ	Max.	Units
Cin	Input Capacitance	Viv $=0 \mathrm{~V}$	4.5	6	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$	5.5	8	pF

Note:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(1)}$		Min.	Typ ${ }^{(2)}$	Max.	Units
Icc	Quiescent Power Supply Current	$\mathrm{VCC}=$ Max.	VIN $=$ GND or Vcc		0.1	10	$\mu \mathrm{A}$
$\Delta \mathrm{Icc}$	Quiescent Power Supply Current TTL Inputs HIGH	$\mathrm{VCC}=$ Max.	$\mathrm{VIN}=\mathrm{Vcc}-0.6 \mathrm{~V}^{(3)}$		2.0	30	$\mu \mathrm{A}$
Icci	Dynamic Power Supply ${ }^{(4)}$	VCC $=$ Max., Outputs Open $\overline{\mathrm{OE}}=\mathrm{GND}$ One Bit Toggling 50\% Duty Cycle	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$		50	75	$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} \end{gathered}$
IC	Total Power Supply Current ${ }^{(6)}$	VCC = Max., Outputs Open $\mathrm{fl}=10 \mathrm{MHz}$ 50\% Duty Cycle $\overline{\mathrm{OE}}=\mathrm{GND}$ One Bit Toggling	$\begin{aligned} & \mathrm{VIN}=\mathrm{Vcc}-0.6 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{GND} \end{aligned}$		0.6	2.3	mA
		VCC = Max., Outputs Open $\mathrm{fi}=2.5 \mathrm{MHz}$ 50\% Duty Cycle $\overline{\mathrm{OE}}=\mathrm{GND}$ 8 Bits Toggling	$\begin{aligned} & \mathrm{VIN}=\mathrm{Vcc}-0.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$		2.1	$4.7{ }^{(5)}$	

Notes:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input; all other inputs at Vcc or GND.
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
6. Ic =Iquiescent + Iinputs + Idynamic
$\mathrm{IC}=\mathrm{ICC}+\Delta \mathrm{ICC} \mathrm{DHNT}_{\mathrm{T}}+\mathrm{ICCD}(\mathrm{fCP} / 2+\mathrm{fiNI})$
Icc $=$ Quiescent Current (Iccl, Icch and Iccz)
$\Delta \mathrm{Icc}=$ Power Supply Current for a TTL High Input
DH = Duty Cycle for TTL Inputs High
$\mathrm{N}_{\mathrm{T}}=$ Number of TTL Inputs at DH
ICCD $=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
fcP $=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
NCP = Number of Clock Inputs at fCP
fi = Input Frequency
$\mathrm{N}_{\mathrm{I}}=$ Number of Inputs at fi
All currents are in milliamps and all frequencies are in megahertz.

Switching Characteristics over Operating Range ${ }^{(1)}$

Parameters	Description	Conditions ${ }^{(2)}$	$\begin{array}{\|c\|} \hline \text { LPT373 } \\ \hline \text { Com. } \\ \hline \end{array}$		$\begin{gathered} \hline \text { LPT373A } \\ \hline \text { Com. } \end{gathered}$		$\begin{gathered} \hline \text { LPT373C } \\ \hline \text { Com. } \end{gathered}$		Unit
			$\mathbf{M i n}{ }^{(3)}$	Max	$\mathbf{M i n}{ }^{(3)}$	Max	$\mathbf{M i n}^{(3)}$	Max	
tPLH tPHL	Propagation Delay Dx to Ox	$\begin{gathered} \mathrm{CL}=50 \mathrm{pF} \\ \mathrm{RL}=500 \Omega \end{gathered}$	1.5	8.0	1.5	5.2	1.5	4.2	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay LE to Ox		2.0	8.5	2.0	8.5	2.0	5.5	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to Ox		1.5	8.5	1.5	6.5	1.5	5.5	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time ${ }^{(4)}$ $\overline{\mathrm{OE}}$ to Ox		1.5	7.5	1.5	5.5	1.5	5.0	ns
tsu	Setup Time HIGH or LOW, Dx to LE		2.0		2.0		2.0		ns
th	Hold Time HIGH or LOW, Dx to LE		1.5		1.5		1.5		ns
tw	LE Pulse Width $\mathrm{HIGH}^{(4)}$		6.0		5.0		5.0		ns
tsk(o)	Output Skew ${ }^{(5)}$			0.5		0.5		0.5	ns

Notes:

1. Propagation Delays and Enable/Disable times are with $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$, normal range. For $\mathrm{Vcc}=2.7 \mathrm{~V}$, extended range, all Propagation Delays and Enable/Disable times should be degraded by 20%.
2. See test circuit and wave forms.
3. Minimum limits are guaranteed but not tested on Propagation Delays.
4. This parameter is guaranteed but not production tested.
5. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

[^0]: 1. $\mathrm{H}=$ High Voltage Level, $\mathrm{X}=$ Don't Care,

 L = Low Voltage Level, Z = High Impedance

