: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

25-bit 1:1 or 14-bit 1:2 Configurable Registered Buffer with Parity

Product Features

- PI74SSTU32866 is a low-voltage device with $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$
- Supports Low Power Standby Operation
- All Inputs are SSTL_18 Compatible, except $\overline{\mathrm{RST}}, \mathrm{C} 0, \mathrm{C} 1$, which are LVCMOS.
- Output drivers are optimized to drive DDR-II DIMM loads
- Packaging (Pb-free \& Green):
- 96-Ball LFBGA (NB)
- PI74SSTU32866 supports DDR2-533/400

Logic Block Diagram 1:2 Mode (Positive Logic)

Product Description

This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer with parity is designed for 1.7 V to $1.9 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ operation. All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control and reset $\overline{(\mathrm{RST})}$ inputs are LVCMOS. All data outputs are 1.8 V CMOS drivers that have been optimized to drive the DDR-II DIMM load, and meet SSTL_18 specifications. The error $(\overline{\mathrm{QERR}})$ output is 1.8 V open-drain driver.
The PI74SSTU32866 operates from a differential clock (CK and $\overline{\mathrm{CK}})$. Data are registered at the crossing of CK going high, and $\overline{\mathrm{CK}}$ going low.

The PI74SSTU32866 accepts a parity bit from the memory controller on the parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs (D2-D3, D5-D6, D8-D25 when
$\mathrm{C} 0=0$ and $\mathrm{C} 1=0 ; \mathrm{D} 2-\mathrm{D} 3, \mathrm{D} 5-\mathrm{D} 6, \mathrm{D} 8-\mathrm{D} 14$ when $\mathrm{C} 0=0$ and $\mathrm{C} 1=1$; or $\mathrm{D} 1-\mathrm{D} 6, \mathrm{D} 8-\mathrm{D} 13$ when $\mathrm{C} 0=1$ and $\mathrm{C} 1=1$) and indicates whether a parity error has occurred on the open-drain $\overline{\text { QERR }}$ pin (active low). The convention is even parity, i.e., valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit. To calculate parity, all DIMM-independent data inputs must be tied to a known logic state.
When used as a single device, the C 0 and C 1 inputs are tied low. In this configuration, parity is checked on the PAR_IN input which arrives one cycle after the input data to which it applies. The partial-parity-out (PPO) and $\overline{\text { QERR }}$ signals are valid three cycles after the corresponding data inputs.
When used in pairs, the C 0 input of the first register is tied low and the C 0 input of the second register is tied high. The C 1 input of both registers are tied high. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the first device. The PPO and $\overline{\mathrm{QERR}}$ signals are produced on the second device three clock cycles after the corresponding data inputs. The PPO output of the first register is cascaded to the PAR_IN of the second register. The $\overline{\text { QERR }}$ output of the first register is left floating and the valid error information is latched on the QERR output of the second register.
If an error occurs and the $\overline{\text { QERR }}$ output is driven low, it stays latched low for two clock cycles or until RST is driven low. The DIMM-dependent signals (DCKE, $\overline{\mathrm{DCS}}$, DODT, and $\overline{\mathrm{CSR}}$) are not included in the parity check computation.
The C 0 input controls the pinout configuration for the $1: 2$ pinout from A configuration (when low) to B configuration (when high). The C 1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high).
In the DDR-II RDIMM application, RST is specified to be completely asynchronous with respect to CK and $\overline{\mathrm{CK}}$. Therefore,

Product Description - Continued

no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the Qn outputs will be driven low quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the low-tohigh transition of $\overline{\text { RST }}$ until the input receivers are fully enabled, the design of the PI74SSTU32866 must ensure that the outputs will remain low, thus ensuring no glitches on the output.
To ensure defined outputs from the register before a stable clock has been supplied, $\overline{\mathrm{RST}}$ must be held in the low state during power up.
The device supports low-power standby operation. When $\overline{\text { RST }}$ is low, the differential input receivers are disabled, and undriven (floating) data, clock and reference voltage ($\mathrm{V}_{\mathrm{REF}}$) inputs are allowed. In addition, when RST is low all registers are reset, and all outputs are forced low. The LVCMOS $\overline{\mathrm{RST}}, \mathrm{C} 0$, and C 1 inputs must always be held at a valid logic high or low level.
The device also supports low-power active operation by monitoring both system chip select ($\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$) inputs and will gate the Qn and PPO outputs from changing states when both $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ inputs are high. If either $\overline{\mathrm{DCS}}$ or $\overline{\mathrm{CSR}}$ input is low, the Qn and PPO outputs will function normally. The $\overline{\mathrm{RST}}$ input has priority over the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control and when driven low will force the Qn and PPO outputs low, and the $\overline{\text { QERR }}$ output high. If the $\overline{\mathrm{DCS}}$ control functionality is not desired, then the $\overline{\mathrm{CSR}}$ input can be hard-wired to ground, in which case, the setup-time requirement for $\overline{\mathrm{DCS}}$ would be the same as for the other D data inputs. To control the low-power mode with $\overline{\mathrm{DCS}}$ only, then the $\overline{\mathrm{CSR}}$ input should be pulled up to V_{DD} through a pullup resistor.

96-ball LFBGA (MO-205CC)

	123	456
A	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
B	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$
C	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
D	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$
E	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
F	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
G	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
H	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
J	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$
K	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
L	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$
M	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$
N	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
P	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
R	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
T	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$

Pin Configuration ${ }^{(1,2)} \mathbf{1 : 1}$ Register ($\mathbf{C 0}=\mathbf{0}, \mathbf{C 1}=\mathbf{0}$)

	1	2	3	4	5	6
A	DCKE	PPO	$\mathrm{V}_{\text {REF }}$	V_{DD}	QCKE	DNU
B	D2	D15	GND	GND	Q2	Q15
C	D3	D16	V ${ }_{\text {DD }}$	V_{DD}	Q3	Q15
D	DODT	$\overline{\text { QERR }}$	GND	GND	QODT	DNU
E	D5	D17	V_{DD}	V_{DD}	Q5	Q17
F	D6	D18	GND	GND	Q6	Q18
G	PAR_IN	$\overline{\mathrm{RST}}$	$\mathrm{V}_{\text {DD }}$	V_{DD}	C1	C0
H	CK	$\overline{\mathrm{DCS}}$	GND	GND	$\overline{\mathrm{QCS}}$	DNU
J	$\overline{\mathrm{CK}}$	$\overline{\mathrm{CSR}}$	$V_{\text {DD }}$	V_{DD}	NC	NC
K	D8	D19	GND	GND	Q8	Q19
L	D9	D20	V_{DD}	V_{DD}	Q9	Q20
M	D10	D21	GND	GND	Q10	Q21
N	D11	D22	$V_{\text {DD }}$	V_{DD}	Q11	Q22
P	D12	D23	GND	GND	Q12	Q23
R	D13	D24	V ${ }_{\text {DD }}$	$V_{\text {DD }}$	Q13	Q24
T	D14	D25	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\text {DD }}$	Q14	Q25

Pin Configuration 1:2 Register A (C0=0, $\mathrm{C} 1=1)$

	1	2	3	4	5	6
A	DCKE	PPO	VREF	V_{DD}	QCKEA	QCKEB
B	D2	DNU	GND	GND	Q2A	Q2B
C	D3	DNU	V ${ }_{\text {DD }}$	V_{DD}	Q3A	Q3B
D	DODT	$\overline{\text { QERR }}$	GND	GND	QODTA	QODTB
E	D5	NC	$V_{\text {DD }}$	V_{DD}	Q5A	Q5B
F	D6	NC	GND	GND	Q6A	Q6B
G	PAR_IN	$\overline{\mathrm{RST}}$	V_{DD}	V_{DD}	C1	C0
H	CK	$\overline{\mathrm{DCS}}$	GND	GND	QCSA	QCSB
J	$\overline{\mathrm{CK}}$	$\overline{\mathrm{CSR}}$	V_{DD}	V_{DD}	NC	NC
K	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	$\mathrm{V}_{\text {DD }}$	V_{DD}	Q9A	Q9B
M	D10	DNU	GND	GND	Q10A	Q10B
N	D11	DNU	$\mathrm{V}_{\text {DD }}$	V_{DD}	Q10A	Q11B
P	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	$V_{\text {DD }}$	V_{DD}	Q13A	Q13B
T	D14	DNU	VREF	V_{DD}	Q14A	Q14B

Pin Configuration ${ }^{(3,4)} \mathbf{1 : 2}$ Register $\mathrm{B}(\mathrm{C} 0=1, \mathrm{C} 1=1)$

	1	2	3	4	5	6
A	D1	PPO	$\mathrm{V}_{\text {REF }}$	V ${ }_{\text {DD }}$	Q1A	QB
B	D2	DNU	GND	GND	Q2A	Q2B
C	D3	DNU	V_{DD}	V_{DD}	Q3A	Q3B
D	D4	$\overline{\text { QERR }}$	GND	GND	Q4A	Q4B
E	D5	DNU	V_{DD}	$V_{\text {DD }}$	Q5A	Q5B
F	D6	DNU	GND	GND	Q6A	Q6B
G	PAR_IN	$\overline{\mathrm{RST}}$	V_{DD}	$\mathrm{V}_{\text {DD }}$	C1	C0
H	CK	$\overline{\mathrm{DCS}}$	GND	GND	$\overline{\text { QCSA }}$	$\overline{\text { QCSB }}$
J	$\overline{\mathrm{CK}}$	$\overline{\mathrm{CSR}}$	V_{DD}	V_{DD}	NC	NC
K	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	V_{DD}	$V_{\text {DD }}$	Q9A	Q9B
M	D10	DNU	GND	GND	Q10A	Q10B
N	DODT	DNU	$\mathrm{V}_{\text {DD }}$	$\mathrm{V}_{\text {DD }}$	QODTA	QODTB
P	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V_{DD}	$V_{\text {DD }}$	Q13A	Q13B
T	DCKE	DNU	$\mathrm{V}_{\text {REF }}$	V_{DD}	QCKEA	QCKEB

Notes:
3. DNU denotes do not use.
4. NC denotes No Internal Connection.

Terminal Functions

Name	Description	Characteristics
GND	Ground	Ground Input
$\mathrm{V}_{\text {DD }}$	Power Supply	1.8 V nominal
$\mathrm{V}_{\text {REF }}$	Input Reference Voltage	0.9 V nominal
CK	Positive master clock input	Differential Clock input
$\overline{\mathrm{CK}}$	Negative master clock input	Differential Clock input
C0, C1	Configuration control inputs	LVCMOS inputs
$\overline{\mathrm{RST}}$	Asynchronous reset input - resets registers and disables $\mathrm{V}_{\text {REF }}$ data and clock differential - input receivers	LVCMOS inputs
$\overline{\mathrm{CSR}}, \overline{\mathrm{DCS}}$	Chip select inputs disables D1-D25 outputs switching when both inputs are high ${ }^{(5)}$	SSTL_18 input
D1-D25	Data input - clocked in on the crossing of the rising edge of CK and the falling edge of $\overline{\mathrm{CK}}$	SSTL_18 input
DODT	The outputs of this register bit will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control	SSTL_18 input
PAR_IN	Parity input - arrives one clock cycle after the corresponding data input	SSTL_18 input
DCKE	The outputs of this register bit will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control	SSTL_18 input
Q1-Q25	Data outputs that are suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control ${ }^{(6)}$	1.8 V CMOS output
PPO	Partial Parity out - indicates odd parity of inputs D1- D25 ${ }^{(5)}$	1.8 V CMOS output
$\overline{\mathrm{QCS}}$	Data output that will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control	1.8 V CMOS output
QODT	Data output that will not be suspended by the DCS and CSR control	1.8 V CMOS output
QCKE	Data output that will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control	1.8V CMOS output
$\overline{\text { QERR }}$	Output error bit - generated one clock cycle after the corresponding data output	Open-drain output
NC	No internal connection	
DNU	Do not use - inputs are in stand-by-equivalent mode and outputs are driven low	

Notes:

5. Data inputs $=\mathrm{D} 2, \mathrm{D} 3, \mathrm{D} 5, \mathrm{D} 6, \mathrm{D} 8-\mathrm{D} 25$ when $\mathrm{C} 0=0$ and $\mathrm{C} 1=0$

Data inputs $=$ D2, D3, D5, D6, D8-D14 when $\mathrm{C} 0=0$ and $\mathrm{C} 1=1$
Data inputs $=$ D1-D6, D8-D10, D12, D13 when $\mathrm{C} 0=1$ and $\mathrm{C} 1=1$
6. Data outputs $=$ Q2, Q3, Q5, Q6, Q8-Q25 when $\mathrm{C} 0=0$ and $\mathrm{Cl}=0$

Data outputs $=$ Q2, Q3, Q5, Q6, Q8-Q14 when $\mathrm{C} 0=0$ and $\mathrm{C} 1=1$
Data outputs $=$ Q1-Q6, Q8-Q10, Q12, Q13 when $\mathrm{C} 0=1$ and $\mathrm{C} 1=1$

Function Table (each flip flop)

Inputs						Outputs		
RST	$\overline{\text { DCS }}$	$\overline{\text { CSR }}$	CK	$\overline{\mathbf{C K}}$	Dn, DODT, DCKE	Qn	$\overline{\text { QCS }}$	QODT, QCKE
H	L	L	\uparrow	\downarrow	L	L	L	L
H	L	L	\uparrow	\downarrow	H	H	L	H
H	L	L	L or H	L or H	X	Q0	Q0	Q0
H	L	H	\uparrow	\downarrow	L	L	L	L
H	L	H	\uparrow	\downarrow	H	H	L	H
H	L	H	L or H	L or H	X	Q0	Q0	Q0
H	H	L	\uparrow	\downarrow	L	L	H	L
H	H	L	\uparrow	\downarrow	H	H	H	H
H	H	L	L or H	L or H	X	Q0	Q0	Q0
H	H	H	\uparrow	\downarrow	L	Q0	H	L
H	H	H	\uparrow	\downarrow	H	Q0	H	H
H	H	H	L or H	L or H	X	Q0	Q0	Q0
L	X or floating	L	L	L				

Function Table (Parity and Stand-by)

Inputs							Outputs	
RST	$\overline{\text { DCS }}$	$\overline{\text { CSR }}$	CK	$\overline{\mathrm{CK}}$	$\begin{array}{\|c\|} \hline \sum \text { of inputs }=H \\ \left(\text { D1-D25) }{ }^{(7)}\right. \end{array}$	PAR_IN ${ }^{(8)}$	PPO	$\overline{\text { QERR }}^{(9)}$
H	L	X	\uparrow	\downarrow	Even	L	L	H
H	L	X	\uparrow	\downarrow	Odd	L	H	L
H	L	X	\uparrow	\downarrow	Even	H	H	L
H	L	X	\uparrow	\downarrow	Odd	H	L	H
H	H	L	\uparrow	\downarrow	Even	L	L	H
H	H	L	\uparrow	\downarrow	Odd	L	H	L
H	H	L	\uparrow	\downarrow	Even	H	H	L
H	H	L	\uparrow	\downarrow	Odd	H	L	H
H	H	H	\uparrow	\downarrow	X	X	PPO_{0}	$\overline{\text { QERR }}_{0}$
H	X	X	L or H	L or H	X	X	PPO_{0}	$\overline{\text { QERR }}_{0}$
L	X or floating	L	H					

Notes:

[^0]

Parity Logic Diagram 1:1 Configuration (C0 = 0, C1 = 0)

Parity Logic Diagram for 1:2 configuration Register A (C0=0, C1=1)
*Parity Logic Diagram for 1:2 configuration Register $\mathbf{B}(\mathbf{C 0}=1, \mathbf{C 1}=1)$

Timing Diagram for 1:1 Configuration ($\mathbf{C} 0=0, \mathrm{C} 1=0)$

Timing Diagram for 1:2 Configuration Register A (C0=0, C1=1)

Timing Diagram for 1:2 Configuration Register $\mathrm{B}(\mathbf{C 0}=\mathbf{1}, \mathbf{C 1}=\mathbf{1})$

* PAR_IN is driven from PPO of Regiser A $(\mathrm{C} 0=0, \mathrm{C} 1=1)$

Maximum Ratings ${ }^{(10,11,12)}$

(Above which the useful life may be impaired. For user guidelines, not tested.)

Notes:
10. Stresses greater than those listed under MAXIMUMRATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
11. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
12. This value is limited to 2.5 V maximum

Recommended Operating Conditions ${ }^{(13)}$

Parameters	Descrition		Min.	Nom.	Max.	Units
$V_{\text {DD }}$	Supply Voltage		1.7		1.9	V
$V_{\text {REF }}$	Reference Voltage		0.49 x V DD	$0.50 \times \mathrm{V}_{\mathrm{DD}}$	$0.51 \times \mathrm{V}_{\text {DD }}$	
$\mathrm{V}_{\text {TT }}$	Termination Voltage		$\mathrm{V}_{\text {REF }}-40 \mathrm{~mA}$	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\text {REF }}-40 \mathrm{~mA}$	
$\mathrm{V}_{\text {I }}$	Input Voltage		0		$\mathrm{V}_{\text {DD }}$	
V_{IH}	AC High - Level Input Voltage	Data, $\overline{\mathrm{CSR}}$ and PAR_IN Inputs	$\mathrm{V}_{\text {REF }}+250 \mathrm{mV}$			
$\mathrm{V}_{\text {IL }}$	AC Low- Level Input Voltage				$\mathrm{V}_{\text {REF }}-250 \mathrm{mV}$	
V_{IH}	DC High - Level Input Voltage		$\mathrm{V}_{\text {REF }}+25 \mathrm{mV}$			
$\mathrm{V}_{\text {IL }}$	DC Low- Level Input Voltage				VREF -125 mV	
V_{IH}	High Level Input Voltage	$\overline{\mathrm{RST}}, \mathrm{CN}$	$0.65 \times \mathrm{V}_{\mathrm{DD}}$			
V_{IL}	Low Level Input Voltage				$0.35 \times \mathrm{V}_{\mathrm{DD}}$	
$\mathrm{V}_{\text {ICR }}$	Common-mode input Voltage	CK, $\overline{\mathrm{CK}}$	0.675		1.125	
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage		600			mV
IOH	High-Level Output Current				-8	mA
I_{OL}	Low-Level Output Current				8	
T_{A}	Operating Free-air Temperature		0		70	${ }^{\circ} \mathrm{C}$

Note:

13. The RST and Cn inputs of the device must be held at valid levels (not floating) to ensure proper device operation. The differential inputs must not be floating, unless $\overline{\mathrm{RST}}$ is low.

Electrical Characteristics (Over Recommended Operating Free Air Temperature range)

Parameter	Description	Test Conditions		$V_{\text {DD }}$	Min.	Nom.	Max.	Units
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$		1.7 V	1.2			
V_{OL}	Output Low Voltage	$\mathrm{IOL}^{\text {a }}=6 \mathrm{~mA}$		1.7 V			0.5	
$\mathrm{I}_{\text {I }}$	All inputs	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or GND		1.9 V			± 5	$\mu \mathrm{A}$
I_{DD}	Static Stand-by	$\overline{\mathrm{RST}}=\mathrm{GND}$	$\mathrm{I}_{\mathrm{O}}=0$	1.9 V			100	
	Static Operating Current	$\overline{\mathrm{RST}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$		1.9 V			40	mA
IDDD	Dynamic Operating Current - clock only	$\overline{\mathrm{RST}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$, or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})} \mathrm{CK}$ and $\overline{\mathrm{CK}}$ switching 50% duty cycle	$\mathrm{I}_{\mathrm{O}}=0$	1.8 V	28			$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} \end{gathered}$
	Dynamic Operating - per each data input, 1:1 mode	$\overline{\mathrm{RST}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$, or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$, CK and $\overline{\mathrm{CK}}$ switching 50\% duty cycle. One data input switching at half clock frequency, 50% duty cycle		1.8 V	36			$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} \end{gathered}$
	Dynamic Operating - per each data input, 1:2 mode	$\overline{\mathrm{RST}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})$, or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})} \mathrm{CK}$ and $\overline{\mathrm{CK}}$ switching 50\% duty cycle. One data input switching at half clock frequency, 50% duty cycle		1.8 V	36			
$\mathrm{C}_{\text {I }}$	Input capacitance, Data and CSR inputs	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{REF}} \pm 250 \mathrm{mV}$		1.8 V	2.5		3.5	pF
	Input capacitance, $\overline{\mathrm{CK}}$ and $\overline{\mathrm{CK}}$	$\mathrm{V}_{\mathrm{ICR}}=0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{ID}}=600 \mathrm{mV}$			2		3	
	Input capacitance, $\overline{\mathrm{RST}}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {DD }}$ or GND				2.5		

Timing Requirements Over Recommended Operating Free Air Temperature range (See Figure 1)

Parameter		Description	Min.	Max	Units
$\mathrm{f}_{\text {clock }}$	Clock frequency			270	MHz
t_{W}	Pulse Duration, CK, $\overline{\mathrm{CK}}$, High or low		1		ns
$\mathrm{t}_{\text {act }}$	Differential inputs active time ${ }^{(14,15)}$			10	
$\mathrm{t}_{\text {inact }}$	Differential inputs inactive time ${ }^{(14,15,16)}$			15	
$\mathrm{t}_{\text {su }}$	Setup time	$\overline{\overline{\mathrm{DCS}}}$ before $\mathrm{CK} \uparrow, \overline{\mathrm{CK}} \downarrow, \overline{\mathrm{CSR}}$ high, $\overline{\mathrm{CSR}}$ before $\mathrm{CK} \uparrow, \overline{\mathrm{CK}} \downarrow, \overline{\mathrm{DCS}}$ high	0.7		
		$\overline{\mathrm{DCS}}$ before CK \uparrow, CK \downarrow, $\overline{\mathrm{CSR}}$ low	0.5		
		DODT, DCKE and data before CK $\uparrow, \overline{\mathrm{CK}} \downarrow$	0.5		
		PAR_IN before CK $\uparrow, \overline{\mathrm{CK}} \downarrow$	0.5		
th	Hold Time	DCS, DODT, DCKE and data before CK $\uparrow, \overline{\mathrm{CK}} \downarrow$	0.5		
		PAR_IN after $\mathrm{CK} \uparrow, \overline{\mathrm{CK}} \downarrow$	0.5		

Notes: 14. This parameter is not necessarily production tested.
15. Data and $\mathrm{V}_{\text {REF }}$ inputs must be a low minimum time of $\mathrm{t}_{\text {act }}$ max, after $\overline{\mathrm{RST}}$ is taken high.
16. Data and clock inputs must be held at valid levels (not floating) a minimum time of $\mathrm{t}_{\text {inact }}$ max after $\overline{\mathrm{RST}}$ is taken low.

Switching Characteristics Over Recommended Operating Free Air Temperature range (See Figure 1)

Symbol	Parameter	Measure Condition	Min.	Max.	Units
$\mathrm{f}_{\text {MAX }}$	Maximum input clock frequency		270		MHz
$t_{\text {PDM }}$	Propagation Delay, single bit switching	From $\mathrm{CK} \uparrow$ and $\overline{\mathrm{CK}} \downarrow$ to Qn	1.41	2.15	ns
$\mathrm{tPDMS}^{(17,18)}$	Propagation Delay Simultaneous Switching			2.35	ns
tpD	Propagation Delay	From $\mathrm{CK} \uparrow$ and $\overline{\mathrm{CK}} \downarrow$ to $\overline{\mathrm{PPO}}$	0.5	1.8	ns
$\mathrm{t}_{\text {LH }}$	Low-to-High propagation delay	From $\mathrm{CK} \uparrow$ and $\mathrm{CK} \downarrow$ to $\overline{\mathrm{QERR}}$	1.2	3	ns
t_{HL}	High-to-Low propagation delay		1	2.4	ns
tPHL	High-to-Low propagation delay	From $\overline{\mathrm{RST}} \downarrow$ to $\mathrm{Qn} \downarrow$		3	ns
tPHL	High-to-Low propagation delay	From $\overline{\mathrm{RST}} \downarrow$ to PPO \downarrow		3	ns
tPLH	Low-to-high propagation delay	From $\overline{\mathrm{RST}} \downarrow$ to $\overline{\mathrm{QERR}} \downarrow$		3	ns

Notes:
17. Includes 350 ps test load transmission-line delay.
18. This parameter is not necessarily production tested.

Data Output Edge Rates Over Recommended Operating Free Air Temperature range (See Figure 2)

Symbol	Parameter	Measurement Condtions	Min.	Max.	Units
$\mathrm{dV} / \mathrm{dt} \mathrm{r}$	Rising edge slew rate	From 20% to 80%	1	4	
$\mathrm{dV} / \mathrm{dt} \mathrm{f}$	Falling edge slew rate	From 20% to 80%	1	4	
$\mathrm{dV} / \mathrm{dt}^{(19)} \Delta^{(19)}$	absolute difference between dV/dt_r and dV/dt_f	From 20% or 80% to 80% or 20%		1	

Notes:

19. Difference between $\mathrm{dV} / \mathrm{dt}_{\mathrm{r}} \mathrm{r}$ (rising edge rate) and $\mathrm{dV} / \mathrm{dt}_{\mathrm{f}} \mathrm{f}$ (falling edge rate).

Test Circuit and Switching Waveforms ${ }^{(20-28)}$

Voltage and Current Waveforms
Input Active and Inactive Times

Load Circuit

Voltage Waveforms - Pulse Duration

Voltage Waveforms - Propagation Delay Times

Voltage Waveforms - Setup and Hold Times

Voltage Waveforms - Propagation Delay Times

Figure 1. Parameter Measurement Information ($\mathrm{V}_{\mathrm{DD}}=\mathbf{1 . 8 V} \pm \mathbf{0 . 1} \mathrm{V}$)

Notes:

20. C_{L} includes probe and jig capacitance
21. I_{DD} tested with clock and data inputs held at V_{DD} or GND and $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$
22. All input pulses are supplied by generators having the following characteristics: Pulse Repertition Rate $\geq 10 \mathrm{MHz}, \mathrm{ZO}=50 \Omega$, input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$ (unless otherwise specified).
23. The outputs are measured one at a time with one transition per measurement.
24. $V_{\text {REF }}=V_{D D} / 2$
25. $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{REF}}+250 \mathrm{mV}$ (ac voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$ for LVCMOS input.
26. $\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {REF }}-250 \mathrm{mV}$ (ac voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$ for LVCMOS input.
27. $\mathrm{V}_{\mathrm{ID}}=600 \mathrm{mV}$
28. $t_{\text {PLH }}$ and tPHL are the same as $t_{p d m}$.

Load Circuit, High-to-Low slew measurement ${ }^{(29,30)}$

Load Circuit - Low-to-High Slew Rate Measurement ${ }^{(29,30)}$

Voltage Waveforms - High-to-Low Slew Rate Measurement

Voltage Waveforms - Low-to-High Slew Rate Measurement

Figure 2. Data Output Slew-Rate Measurement Information ($\mathrm{V}_{\mathrm{DD}}=\mathbf{1 . 8 V} \pm \mathbf{0 . 1 V}$)
Notes:
29. C_{L} includes probe and jig capacitance
30. All input pulses are supplied by generators having the following characteristics:
$\operatorname{PRR} \leq 10 \mathrm{MHz}, \mathrm{ZO}=50 \Omega$, input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$ (unless otherwise specified).

Load Circuit - Error Output Slew Rate Measurement

Voltage waveform, open-drain output high-to-low transition time with respect to clock inputs

Voltage waveform, open-drain output low-to-high transition time with respect to reset inputs

Voltage Waveforms - Open-drain output low-to-high transtion time with respect to clock inputs

Figure 3. Error output Measurement Information ($\mathrm{V}_{\mathrm{DD}}=\mathbf{1 . 8} \mathrm{V} \pm \mathbf{0 . 1} \mathrm{V}$)

Partial-Parity-Out (PPO) load circuit

Partial-Parity-Out (PPO) voltage wavefroms; propagation delay times wtih respect to reset inputs

Partial-Parity-Out (PPO) voltage wavefroms; propagation delay times wtih respect to clock inputs

Figure 4. Partial-Parity-Out (PPO) Measurement Information ($V_{D D}=\mathbf{1 . 8 V} \pm \mathbf{0 . 1 V}$)

Packaging Mechanical: 96-ball LFBGA (NB)

Ordering Information $(\mathbf{1 , 2 , 3})$

Ordering Code	Package Code	Package Type
PI74SSTU32866NB	NB	$96-$ Ball LFBGA
PI74SSTU32866NBE	NB	Pb-free \& Green, 96-Ball LFBGA

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. $\mathrm{E}=\mathrm{Pb}$-free \& Green
3. $\quad \mathrm{X}$ suffix $=$ Tape $/$ Reel

[^0]: 7. Data inputs $=\mathrm{D} 2, \mathrm{D} 3, \mathrm{D} 5, \mathrm{D} 6, \mathrm{D} 8-\mathrm{D} 25$ when $\mathrm{C} 0=0$ and $\mathrm{C} 1=0$

 Data inputs $=$ D2, D3, D5, D6, D8-D14 when $\mathrm{C} 0=0$ and $\mathrm{C} 1=1$
 Data inputs $=$ D1-D6, D8-D10, D12, D13 when $\mathrm{C} 0=1$ and $\mathrm{C} 1=1$
 8. PAR_IN arrives one clock cycle ($\mathrm{C} 0=0$), or two clock cycles $(\mathrm{C} 0=1)$, after the data to which it applies
 9. this transition assumes $\overline{\mathrm{QERR}}$ is high at the crossing of CK going high and $\overline{\mathrm{CK}}$ going low. If $\overline{\mathrm{QERR}}$ is low, it stays latched low for two clock cycles or until $\overline{\mathrm{RST}}$ is driven low

