imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PIC12F629/675 Data Sheet

8-Pin, Flash-Based 8-Bit CMOS Microcontrollers

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-60932-160-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

8-Pin Flash-Based 8-Bit CMOS Microcontroller

High-Performance RISC CPU:

- Only 35 Instructions to Learn
- All single-cycle instructions except branches
- · Operating Speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- Interrupt Capability
- 8-Level Deep Hardware Stack
- · Direct, Indirect, and Relative Addressing modes

Special Microcontroller Features:

- Internal and External Oscillator Options
 - Precision Internal 4 MHz oscillator factory calibrated to ±1%
 - External Oscillator support for crystals and resonators
 - 5 µs wake-up from Sleep, 3.0V, typical
- Power-Saving Sleep mode
- Wide Operating Voltage Range 2.0V to 5.5V
- Industrial and Extended Temperature Range
- Low-Power Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Detect (BOD)
- Watchdog Timer (WDT) with Independent Oscillator for Reliable Operation
- Multiplexed MCLR/Input Pin
- Interrupt-on-Pin Change
- Individual Programmable Weak Pull-ups
- Programmable Code Protection
- High Endurance Flash/EEPROM Cell
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/Data EEPROM Retention: > 40 years

Low-Power Features:

- Standby Current:
 - 1 nA @ 2.0V, typical
- Operating Current:
 - 8.5 μA @ 32 kHz, 2.0V, typical
 - 100 μA @ 1 MHz, 2.0V, typical
- Watchdog Timer Current
 300 nA @ 2.0V, typical
- 300 TA @ 2.00, typical
- Timer1 Oscillator Current:
 - 4 μA @ 32 kHz, 2.0V, typical

Peripheral Features:

- · 6 I/O Pins with Individual Direction Control
- High Current Sink/Source for Direct LED Drive
- Analog Comparator module with:
 - One analog comparator
 - Programmable on-chip comparator voltage reference (CVREF) module
 - Programmable input multiplexing from device inputs
 - Comparator output is externally accessible
- Analog-to-Digital Converter module (PIC12F675):
 - 10-bit resolution
 - Programmable 4-channel input
 - Voltage reference input
- Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator, if INTOSC mode selected
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Device	Program Memory	Data N	lemory	10	10-bit A/D	Comparatora	Timers	
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	1/0	(ch)	Comparators	8/16-bit	
PIC12F629	1024	64	128	6	—	1	1/1	
PIC12F675	1024	64	128	6	4	1	1/1	

* 8-bit, 8-pin devices protected by Microchip's Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and foreign patents and applications may be issued or pending.

Pin Diagrams

Table of Contents

1.0	Device Overview	7
2.0	Memory Organization	9
3.0	GPIO Port	21
4.0	Timer0 Module	. 29
5.0	Timer1 Module with Gate Control	. 32
6.0	Comparator Module	. 37
7.0	Analog-to-Digital Converter (A/D) Module (PIC12F675 only)	43
8.0	Data EEPROM Memory	49
9.0	Special Features of the CPU	53
10.0	Instruction Set Summary	71
11.0	Development Support	81
12.0	Electrical Specifications	85
13.0	DC and AC Characteristics Graphs and Tables	107
14.0	Packaging Information	117
Apper	ndix A: Data Sheet Revision History	127
Apper	ndix B: Device Differences	127
Apper	ndix C: Device Migrations	128
Apper	ndix D: Migrating from other PIC [®] Devices	128
Index		129
On-Li	ne Support	133
Syste	ms Information and Upgrade Hot Line	133
Read	er Response	134
Produ	ct Identification System	135

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

1.0 DEVICE OVERVIEW

This document contains device specific information for the PIC12F629/675. Additional information may be found in the PIC[®] Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this Data Sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC12F629 and PIC12F675 devices are covered by this Data Sheet. They are identical, except the PIC12F675 has a 10-bit A/D converter. They come in 8-pin PDIP, SOIC, MLF-S and DFN packages. Figure 1-1 shows a block diagram of the PIC12F629/ 675 devices. Table 1-1 shows the pinout description.

TABLE 1-1: PIC12F629/675 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
GP0/AN0/CIN+/ICSPDAT	GP0	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change
	AN0	AN		A/D Channel 0 input
	CIN+	AN		Comparator input
	ICSPDAT	TTL	CMOS	Serial programming I/O
GP1/AN1/CIN-/VREF/ ICSPCLK	GP1	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change
	AN1	AN		A/D Channel 1 input
	CIN-	AN		Comparator input
	VREF	AN		External voltage reference
	ICSPCLK	ST		Serial programming clock
GP2/AN2/T0CKI/INT/COUT	GP2	ST	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change
	AN2	AN		A/D Channel 2 input
	TOCKI	ST		TMR0 clock input
	INT	ST		External interrupt
	COUT		CMOS	Comparator output
GP3/MCLR/Vpp	GP3	TTL		Input port w/ interrupt-on-change
	MCLR	ST		Master Clear
	VPP	HV		Programming voltage
GP4/AN3/T1G/OSC2/ CLKOUT	GP4	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change
	AN3	AN		A/D Channel 3 input
	T1G	ST		TMR1 gate
	OSC2		XTAL	Crystal/resonator
	CLKOUT		CMOS	Fosc/4 output
GP5/T1CKI/OSC1/CLKIN	GP5	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change
	T1CKI	ST		TMR1 clock
	OSC1	XTAL		Crystal/resonator
	CLKIN	ST		External clock input/RC oscillator connection
Vss	Vss	Power		Ground reference
VDD	Vdd	Power		Positive supply

Legend: Shade = PIC12F675 only

TTL = TTL input buffer, ST = Schmitt Trigger input buffer

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC12F629/675 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h-03FFh) for the PIC12F629/675 devices is physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 1K x 14 space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE DSTEMP/675

2.2 Data Memory Organization

The data memory (see Figure 2-2) is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-5Fh are General Purpose Registers, implemented as static RAM and are mapped across both banks. All other RAM is unimplemented and returns '0' when read. RP0 (STATUS<5>) is the bank select bit.

- RP0 = 0 Bank 0 is selected
- RP0 = 1 Bank 1 is selected
- Note: The IRP and RP1 bits STATUS<7:6> are reserved and should always be maintained as '0's.
- 2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64 x 8 in the PIC12F629/675 devices. Each register is accessed, either directly or indirectly, through the File Select Register FSR (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC12F629/675

	File		File				
	Address	A	ddress				
Indirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h				
TMR0	01h	OPTION_REG	81h				
PCL	02h	PCL	82h				
STATUS	03h	STATUS	83h				
FSR	04h	FSR	84h				
GPIO	05h	TRISIO	85h				
	06h		86h				
	07h		87h				
	08h		88h				
	09h		89h				
PCLATH	0Ah	PCLATH	8Ah				
INTCON	0Bh	INTCON	8Bh				
PIR1	0Ch	PIE1	8Ch				
	0Dh		8Dh				
TMR1L	0Eh	PCON	8Eh				
TMR1H	0Fh		8Fh				
T1CON	10h	OSCCAL	90h				
	11h		91h				
	12h		92h				
	13h		93h				
	14h		94h				
	15h	WPU	95h				
	16h	IOC	96h				
	17h		97h				
	18h		98h				
CMCON	19h	VRCON	99h				
	1Ah	EEDATA	9Ah				
	1Bh	EEADR	9Bh				
	1Ch	EECON1	9Ch				
	1Dh	EECON2 ⁽¹⁾	9Dh				
ADRESH ⁽²⁾	1Eh	ADRESL ⁽²⁾	9Eh				
ADCON0 ⁽²⁾	1Fh	ANSEL ⁽²⁾	9Fh				
	20h		A0h				
Conorol							
Purpose							
Registers		20h-5Eh					
64 Butos		2011-01 11					
04 Dytes							
	5Fh		DFh				
	60h		E0h				
	7Eb		FFh				
Bank 0		Bank 1					
Unimplemente	d data mei	mory locations, rea	d as '0'.				
1: Not a physical register.							
2: PIC12F675 on	у.						

	1	1		1	1	1		1	1	1	1
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 0											
00h	INDF ⁽¹⁾	Addressing	this Location	uses Conter	nts of FSR to	Address Dat	ta Memory			0000 0000	20,61
01h	TMR0	Timer0 Mod	ule's Registe	er						xxxx xxxx	29
02h	PCL	Program Co	ounter's (PC)	Least Signifi	icant Byte					0000 0000	19
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	14
04h	FSR	Indirect Data	a Memory Ac	dress Pointe	er	•	•			xxxx xxxx	20
05h	GPIO	—	—	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0	xx xxxx	21
06h	-	Unimplemen	nted							—	_
07h	-	Unimplemen	nted							_	—
08h	—	Unimplemen	nted							—	_
09h	—	Unimplemen	nted							—	_
0Ah	PCLATH	—	—	_	Write Buffer	for Upper 5	bits of Progra	am Counter		0 0000	19
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	15
0Ch	PIR1	EEIF	ADIF	—	—	CMIF	—	—	TMR1IF	0000	17
0Dh	—	Unimplemen	Unimplemented								—
0Eh	TMR1L	Holding Reg	Holding Register for the Least Significant Byte of the 16-bit Timer1							xxxx xxxx	32
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	ne 16-bit Time	er1			xxxx xxxx	32
10h	T1CON	_	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000 0000	35
11h	—	Unimplemen	nted							—	_
12h	—	Unimplemen	nted							—	_
13h	—	Unimplemen	nted							—	_
14h	—	Unimplemen	nted							—	_
15h	—	Unimplemen	nted							—	_
16h	—	Unimplemen	nted							—	—
17h	—	Unimplemen	nted							—	—
18h	—	Unimplemen	nted							—	—
19h	CMCON	—	COUT	—	CINV	CIS	CM2	CM1	CM0	-0-0 0000	38
1Ah	—	Unimplemented							—	—	
1Bh	—	Unimplemented						—	—		
1Ch	—	Unimplemented						—	—		
1Dh	—	Unimplemen	nted							—	_
1Eh	ADRESH ⁽³⁾	Most Signifie	cant 8 bits of	the Left Shif	ted A/D Resi	ult or 2 bits of	f the Right SI	hifted Result		xxxx xxxx	44
1Fh	ADCON0 ⁽³⁾	ADFM	VCFG	_	_	CHS1	CHS0	GO/DONE	ADON	00 0000	45,61

TABLE 2-1.	SPECIAL	FUNCTION	REGISTERS	SUMMARY
IADLL 2-1.	JFLUIAL		NEGISTENS	SUMMART

Legend: — = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.

3: PIC12F675 only.

							(
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1											
80h	INDF ⁽¹⁾	Addressing	this Location	uses Conter	nts of FSR to	Address Dat	ta Memory			0000 0000	20,61
81h	OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	14,31
82h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	19
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	14
84h	FSR	Indirect Data	a Memory Ad	dress Pointe	r				•	xxxx xxxx	20
85h	TRISIO	_	—	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISI01	TRISIO0	11 1111	21
86h	_	Unimplemer	nted		•		•		•	_	—
87h	_	Unimplemer	nted							—	_
88h	—	Unimplemen	nted							_	_
89h	—	Unimplemen	nted							_	_
8Ah	PCLATH	_	_	_	Write Buffer	for Upper 5	bits of Progra	am Counter		0 0000	19
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	15
8Ch	PIE1	EEIE	ADIE		—	CMIE	—	—	TMR1IE	00 00	16
8Dh	—	Unimplemen	nted							_	_
8Eh	PCON	—	_		—	—	—	POR	BOD	0x	18
8Fh		Unimplemen	nted							—	_
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	—	—	1000 00	18
91h		Unimplemen	nted							—	_
92h		Unimplemen	nted							—	_
93h		Unimplemen	nted							—	_
94h		Unimplemer	nted							—	_
95h	WPU	—	—	WPU5	WPU4	—	WPU2	WPU1	WPU0	11 -111	21
96h	IOC	—	—	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	23
97h	—	Unimplemen	nted							—	—
98h	—	Unimplemen	Unimplemented							—	—
99h	VRCON	VREN	—	VRR	—	VR3	VR2	VR1	VR0	0-0- 0000	42
9Ah	EEDATA	Data EEPR	OM Data Reg	gister						0000 0000	49
9Bh	EEADR	_	Data EEPR	OM Address	Register					-000 0000	49
9Ch	EECON1	_	_		_	WRERR	WREN	WR	RD	x000	50
9Dh	EECON2 ⁽¹⁾	EEPROM C	ontrol Regist	er 2							50
9Eh	ADRESL ⁽³⁾	Least Signif	icant 2 bits o	f the Left Shi	fted A/D Res	ult of 8 bits o	r the Right S	hifted Result		xxxx xxxx	44
9Fh	ANSEL ⁽³⁾	_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	46,61

TABLE 2-1: SPECIAL FUNCTION REGISTERS SUMMARY (CONTINUED)

Legend: — = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.

3: PIC12F675 only.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- the arithmetic status of the ALU
- · the Reset status
- the bank select bits for data memory (SRAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u u1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see the "Instruction Set Summary".

- Note 1: Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC12F629/675 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a Borrow and <u>Digit</u> Borrow out bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

REGISTER 2-1: STATUS: STATUS REGISTER (ADDRESS: 03h OR 83h)

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IRP: This bit is reserved and should be maintained as '0'
bit 6	RP1: This bit is reserved and should be maintained as '0'
bit 5	RP0: Register Bank Select bit (used for direct addressing)
	0 = Bank 0 (00h - 7Fh)
	1 = Bank 1 (80h - FFh)
bit 4	TO: Time-out bit
	 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT Time-out occurred
bit 3	PD: Power-down bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 2	Z : Zero bit
	 The result of an arithmetic or logic operation is zero
	0 = The result of an arithmetic or logic operation is not zero
bit 1	DC : <u>Digit carry/borrow bit</u> (ADDWF, ADDLW, SUBLW, SUBWF instructions) For borrow, the polarity is reversed.
	1 = A carry-out from the 4th low order bit of the result occurred
	0 = No carry-out from the 4th low order bit of the result
bit 0	C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)
	 A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note:	For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second
	operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- TMR0/WDT prescaler
- External GP2/INT interrupt
- TMR0
- · Weak pull-ups on GPIO

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT by setting PSA bit to '1' (OPTION<3>). See Section 4.4 "Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER (ADDRESS: 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
GPPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GPPU: GPIO Pull-up Enable bit
	1 = GPIO pull-ups are disabled
	0 = GPIO pull-ups are enabled by individual PORT latch values
bit 6	INTEDG: Interrupt Edge Select bit
	1 = Interrupt on rising edge of GP2/INT pin0 = Interrupt on falling edge of GP2/INT pin
bit 5	TOCS: TMR0 Clock Source Select bit
	1 = Transition on GP2/T0CKI pin
	0 = Internal instruction cycle clock (CLKOUT)
bit 4	T0SE: TMR0 Source Edge Select bit
	 1 = Increment on high-to-low transition on GP2/T0CKI pin 0 = Increment on low-to-high transition on GP2/T0CKI pin
bit 3	PSA: Prescaler Assignment bit
	1 = Prescaler is assigned to the WDT0 = Prescaler is assigned to the TIMER0 module
bit 2-0	PS2:PS0: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1 : 256	1 : 128

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO port change and external GP2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS: 0Bh OR 8Bh)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | TOIE | INTE | GPIE | TOIF | INTF | GPIF |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit
	 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	T0IE: TMR0 Overflow Interrupt Enable bit
	 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt
bit 4	INTE: GP2/INT External Interrupt Enable bit
	1 = Enables the GP2/INT external interrupt
	0 = Disables the GP2/INT external interrupt
bit 3	GPIE: Port Change Interrupt Enable bit ⁽¹⁾
	1 = Enables the GPIO port change interrupt
	0 = Disables the GPIO port change interrupt
bit 2	T0IF: TMR0 Overflow Interrupt Flag bit ⁽²⁾
	1 = TMR0 register has overflowed (must be cleared in software)
	0 = TMR0 register did not overflow
bit 1	INTF: GP2/INT External Interrupt Flag bit
	 1 = The GP2/INT external interrupt occurred (must be cleared in software) 0 = The GP2/INT external interrupt did not occur
bit 0	GPIF: Port Change Interrupt Flag bit
	1 = When at least one of the GP5:GP0 pins changed state (must be cleared in software)
	0 = None of the GP5:GP0 pins have changed state
Note 1:	IOC register must also be enabled to enable an interrupt-on-change.

2: T0IF bit is set when TIMER0 rolls over. TIMER0 is unchanged on Reset and should be initialized before clearing T0IF bit.

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
EEIE	ADIE	—	—	CMIE	—	_	TMR1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEIE: EE Write Complete Interrupt Enable bit 1 = Enables the EE write complete interrupt 0 = Disables the EE write complete interrupt
bit 6	ADIE: A/D Converter Interrupt Enable bit (PIC12F675 only)
	1 = Enables the A/D converter interrupt0 = Disables the A/D converter interrupt
bit 5-4	Unimplemented: Read as '0'
bit 3	CMIE: Comparator Interrupt Enable bit
	1 = Enables the comparator interrupt
	0 = Disables the comparator interrupt
bit 2-1	Unimplemented: Read as '0'
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit
	1 = Enables the TMR1 overflow interrupt
	0 = Disables the TMR1 overflow interrupt

2.2.2.5 PIR1 Register

The PIR1 register contains the interrupt flag bits, as shown in Register 2-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
EEIF	ADIF	—	—	CMIF	—	—	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEIF: EEPROM Write Operation Interrupt Flag bit 1 = The write operation completed (must be cleared in software)
h:+ 0	0 = The write operation has not completed or has not been started
DIT 6	ADIF: A/D Converter Interrupt Flag bit (PIC12F675 only)
	1 = The A/D conversion is complete (must be cleared in software)0 = The A/D conversion is not complete
bit 5-4	Unimplemented: Read as '0'
bit 3	CMIF: Comparator Interrupt Flag bit
	1 = Comparator input has changed (must be cleared in software)0 = Comparator input has not changed
bit 2-1	Unimplemented: Read as '0'
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	1 = TMR1 register overflowed (must be cleared in software)

0 = TMR1 register did not overflow

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Detect (BOD)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON Register bits are shown in Register 2-6.

REGISTER 2-6: PCON: POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
—	_	_	—	—	—	POR	BOD
bit 7			•	•			bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOD: Brown-out Detect Status bit
	 1 = No Brown-out Detect occurred 0 = A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)

2.2.2.7 OSCCAL Register

The Oscillator Calibration register (OSCCAL) is used to calibrate the internal 4 MHz oscillator. It contains 6 bits to adjust the frequency up or down to achieve 4 MHz.

The OSCCAL register bits are shown in Register 2-7.

REGISTER 2-7: OSCCAL: OSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)

R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			
bit 7-2 CAL5:CAL0: 6-bit Signed Oscillator Calibration bits							
111111 = Maximum frequency							

L T	
10	0000 = Center frequency
0 0	00000 = Minimum frequency

bit 1-0 Unimplemented: Read as '0'

2.3 PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the PC (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note, *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The PIC12F629/675 family has an 8-level deep x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no Status bits to indicate Stack Overflow or Stack Underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-2.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT ADDRESSING

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			;yes continue

FIGURE 2-2: DIRECT/INDIRECT ADDRESSING PIC12F629/675

3.0 GPIO PORT

There are as many as six general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

Note:	Additional information on I/O ports may be
	found in the PIC [®] Mid-Range Reference
	Manual, (DS33023).

3.1 GPIO and the TRISIO Registers

GPIO is an 6-bit wide, bidirectional port. The corresponding data direction register is TRISIO. Setting a TRISIO bit (= 1) will make the corresponding GPIO pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output (i.e., put the contents of the output latch on the selected pin). The exception is GP3, which is input-only and its TRISIO bit will always read as '1'. Example 3-1 shows how to initialize GPIO.

Reading the GPIO register reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the PORT data latch. GP3 reads '0' when MCLREN = 1.

The TRISIO register controls the direction of the GP pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISIO

register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

Note:	The ANSEL (9Fh) and CMCON (19h)
	registers (9Fh) must be initialized to
	configure an analog channel as a digital
	input. Pins configured as analog inputs will
	read '0'. The ANSEL register is defined for
	the PIC12F675.

EXAMPLE 3-1: INITIALIZING GPIO

BCF	STATUS, RPO	;Bank 0
CLRF	GPIO	;Init GPIO
MOVLW	07h	;Set GP<2:0> to
MOVWF	CMCON	;digital IO
BSF	STATUS, RPO	;Bank 1
CLRF	ANSEL	;Digital I/O
MOVLW	0Ch	;Set GP<3:2> as inputs
MOVWF	TRISIO	;and set GP<5:4,1:0>
		;as outputs
1		

3.2 Additional Pin Functions

Every GPIO pin on the PIC12F629/675 has an interrupt-on-change option and every GPIO pin, except GP3, has a weak pull-up option. The next two sections describe these functions.

3.2.1 WEAK PULL-UP

Each of the GPIO pins, except GP3, has an individually configurable weak internal pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 3-3. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU bit (OPTION<7>).

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0
bit 7							bit 0

REGISTER 3-1: GPIO: GPIO REGISTER (ADDRESS: 05h)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **GPIO<5:0>**: General Purpose I/O pin 1 = Port pin is >VIH 0 = Port pin is <VIL

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1	
_		TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	
bit 7					I		bit 0	
Legend:								
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7-6	Unimplemen	ited: Read as ')'					
bit 5-0	TRISIO<5:0>	: General Purp	ose I/O Tri-Sta	ate Control bit				
	1 = GPIO pin	configured as	an input (tri-st	ated)				
Noto			an output					
Note:	TRISIO<32 alway							
REGISTE	ER 3-3: WPU:	WEAK PULL	-UP REGIS	TER (ADDRE	SS: 95h)			
U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	
_	_	WPU5	WPU4	—	WPU2	WPU1	WPU0	
bit 7					·		bit 0	
Legend:								
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 7-6	Unimplemen	ted: Read as ')'					
bit 5-4	WPU<5:4>: \	Neak Pull-up R	egister bit					
	1 = Pull-up ei	nabled						
hit 2			<u>`</u>					
	It 3 Unimplemented: Read as "0"							
DIL 2-0	Dit 2-0 WYU<2:U 2: Weak Pull-up Register bit							
	0 = Pull-up disabled							
Note 1:	Global GPPU mus	t be enabled fo	r individual pu	ull-ups to be er	nabled.			
2:	The weak pull-up	device is autom	atically disabl	led if the pin is	in Output mode	e (TRISIO = 0).		

3.2.2 INTERRUPT-ON-CHANGE

Each of the GPIO pins is individually configurable as an interrupt-on-change pin. Control bits IOC enable or disable the interrupt function for each pin. Refer to Register 3-4. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of GPIO. The 'mismatch' outputs of the last read are OR'd together to set, the GP Port Change Interrupt flag bit (GPIF) in the INTCON register. This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of GPIO. This will end the mismatch condition.
- b) Clear the flag bit GPIF.

A mismatch condition will continue to set flag bit GPIF. Reading GPIO will end the mismatch condition and allow flag bit GPIF to be cleared.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the GPIF interrupt flag may not get set.

REGISTER 3-4: IOC: INTERRUPT-ON-CHANGE GPIO REGISTER (ADDRESS: 96h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-0	IOC<5:0>: Interrupt-on-Change GPIO Control bits
	1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.

3.3 Pin Descriptions and Diagrams

Each GPIO pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D, refer to the appropriate section in this Data Sheet.

3.3.1 GP0/AN0/CIN+

Figure 3-1 shows the diagram for this pin. The GP0 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- an analog input to the comparator

3.3.2 GP1/AN1/CIN-/VREF

Figure 3-1 shows the diagram for this pin. The GP1 pin is configurable to function as one of the following:

- as a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- · an analog input to the comparator
- a voltage reference input for the A/D (PIC12F675 only)

FIGURE 3-1: BLOCK DIAGRAM OF GP0 AND GP1 PINS

3.3.3 GP2/AN2/T0CKI/INT/COUT

Figure 3-2 shows the diagram for this pin. The GP2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- the clock input for TMR0
- an external edge triggered interrupt
- · a digital output from the comparator

FIGURE 3-2: BLOCK DIAGRAM OF GP2

3.3.4 GP3/MCLR/VPP

Figure 3-3 shows the diagram for this pin. The GP3 pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset

FIGURE 3-3: BLOCK DIAGRAM OF GP3

