

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

8-Pin, Flash-Based 8-Bit CMOS Microcontrollers

*8-bit, 8-pin Devices Protected by Microchip's Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and foreign patents and applications may be issued or pending.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

MICROCHIP PIC12F609/615/617/12HV609/615

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers

High-Performance RISC CPU:

- · Only 35 Instructions to Learn:
 - All single-cycle instructions except branches
- · Operating Speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- · Interrupt Capability
- · 8-Level Deep Hardware Stack
- · Direct, Indirect and Relative Addressing modes

Special Microcontroller Features:

- · Precision Internal Oscillator:
 - Factory calibrated to ±1%, typical
 - Software selectable frequency: 4 MHz or 8 MHz
- · Power-Saving Sleep mode
- · Voltage Range:
 - PIC12F609/615/617: 2.0V to 5.5V
 - PIC12HV609/615: 2.0V to user defined maximum (see note)
- · Industrial and Extended Temperature Range
- · Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Watchdog Timer (WDT) with independent Oscillator for Reliable Operation
- Multiplexed Master Clear with Pull-up/Input Pin
- Programmable Code Protection
- · High Endurance Flash:
 - 100.000 write Flash endurance
 - Flash retention: > 40 years
- Self Read/ Write Program Memory (PIC12F617 only)

Low-Power Features:

- · Standby Current:
 - 50 nA @ 2.0V, typical
- · Operating Current:
 - 11 μA @ 32 kHz, 2.0V, typical
 - 260 μA @ 4 MHz, 2.0V, typical
- · Watchdog Timer Current:
 - 1 μA @ 2.0V, typical

Note: Voltage across the shunt regulator should not exceed 5V.

Peripheral Features:

- Shunt Voltage Regulator (PIC12HV609/615 only):
 - 5 volt regulation
 - 4 mA to 50 mA shunt range
- 5 I/O Pins and 1 Input Only
- · High Current Source/Sink for Direct LED Drive
 - Interrupt-on-pin change or pins
 - Individually programmable weak pull-ups
- · Analog Comparator module with:
 - One analog comparator
 - Programmable on-chip voltage reference (CVREF) module (% of VDD)
 - Comparator inputs and output externally accessible
 - Built-In Hysteresis (software selectable)
- Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler
- · Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Timer1 Gate (count enable)
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator if INTOSC mode selected
 - Option to use system clock as Timer1
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins

PIC12F615/617/HV615 ONLY:

- Enhanced Capture, Compare, PWM module:
 - 16-bit Capture, max. resolution 12.5 ns
 - Compare, max. resolution 200 ns
 - 10-bit PWM with 1 or 2 output channels, 1 output channel programmable "dead time," max. frequency 20 kHz, auto-shutdown
- A/D Converter:
 - 10-bit resolution and 4 channels, samples internal voltage references
- Timer2: 8-Bit Timer/Counter with 8-Bit Period Register, Prescaler and Postscaler

Device	Program Memory	Data Memory	Self Read/	I/O	10-bit A/D	Comparators	ECCP	Timers	Voltage Range
	Flash (words)	SRAM (bytes)	Self Write	1/0	(ch)	Comparators	ECCP	8/16-bit	voitage natige
PIC12F609	1024	64	_	5	0	1		1/1	2.0V-5.5V
PIC12HV609	1024	64	_	5	0	1		1/1	2.0V-user defined
PIC12F615	1024	64	_	5	4	1	YES	2/1	2.0V-5.5V
PIC12HV615	1024	64	_	5	4	1	YES	2/1	2.0V-user defined
PIC12F617	2048	128	YES	5	4	1	YES	2/1	2.0V-5.5V

8-Pin Diagram, PIC12F609/HV609 (PDIP, SOIC, MSOP, DFN)

TABLE 1: PIC12F609/HV609 PIN SUMMARY (PDIP, SOIC, MSOP, DFN)

I/O	Pin	Comparators	Timer	Interrupts	Pull-ups	Basic
GP0	7	CIN+	1	IOC	Υ	ICSPDAT
GP1	6	CIN0-	_	IOC	Y	ICSPCLK
GP2	5	COUT	T0CKI	INT/IOC	Υ	_
GP3 ⁽¹⁾	4	_	_	IOC	Y ⁽²⁾	MCLR/VPP
GP4	3	CIN1-	T1G	IOC	Υ	OSC2/CLKOUT
GP5	2	_	T1CKI	IOC	Υ	OSC1/CLKIN
_	1	_		_	_	VDD
_	8	_	_	_	_	Vss

Note 1: Input only.

2: Only when pin is configured for external MCLR.

8-Pin Diagram, PIC12F615/617/HV615 (PDIP, SOIC, MSOP, DFN)

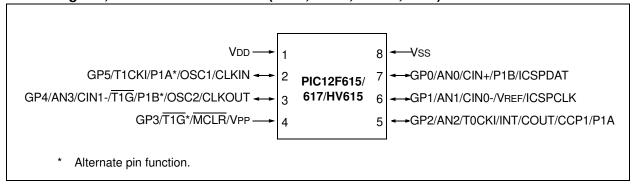


TABLE 2: PIC12F615/617/HV615 PIN SUMMARY (PDIP, SOIC, MSOP, DFN)

I/O	Pin	Analog	Comparator s	Timer	ССР	Interrupts	Pull-ups	Basic
GP0	7	AN0	CIN+	_	P1B	IOC	Υ	ICSPDAT
GP1	6	AN1	CIN0-	_	_	IOC	Υ	ICSPCLK/VREF
GP2	5	AN2	COUT	T0CKI	CCP1/P1A	INT/IOC	Υ	
GP3 ⁽¹⁾	4	1		T1G*	1	IOC	Y ⁽²⁾	MCLR/VPP
GP4	3	AN3	CIN1-	T1G	P1B*	IOC	Υ	OSC2/CLKOUT
GP5	2	_	_	T1CKI	P1A*	IOC	Υ	OSC1/CLKIN
_	1		_	_		_	_	Vdd
_	8	_	_	_	_	_	_	Vss

Alternate pin function.

Note 1: Input only.

2: Only when pin is configured for external $\overline{\text{MCLR}}$.

Table of Contents

1.0	Device Overview	7
2.0	Memory Organization	
3.0	Flash Program Memory Self Read/Self Write Control (PIC12F617 only)	27
4.0	Oscillator Module	37
5.0	VO Port	43
6.0	Timer0 Module	53
7.0	Timer1 Module with Gate Control	57
8.0	Timer2 Module (PIC12F615/617/HV615 only)	65
9.0	Comparator Module	67
10.0	Analog-to-Digital Converter (ADC) Module (PIC12F615/617/HV615 only)	79
11.0	Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only)	89
12.0	Special Features of the CPU	107
13.0	Voltage Regulator	127
14.0	Instruction Set Summary	129
15.0	Development Support	139
16.0	Electrical Specifications	143
17.0	DC and AC Characteristics Graphs and Tables	171
18.0	Packaging Information	195
Appe	ndix A: Data Sheet Revision History	203
Appe	ndix B: Migrating from other PIC [®] Devices	203
Inde	x	205
The I	Microchip Web Site	209
Custo	omer Change Notification Service	209
Custo	omer Support	209
Read	ler Response	210
Produ	uct Identification System	211
World	twide Sales and Service	212

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

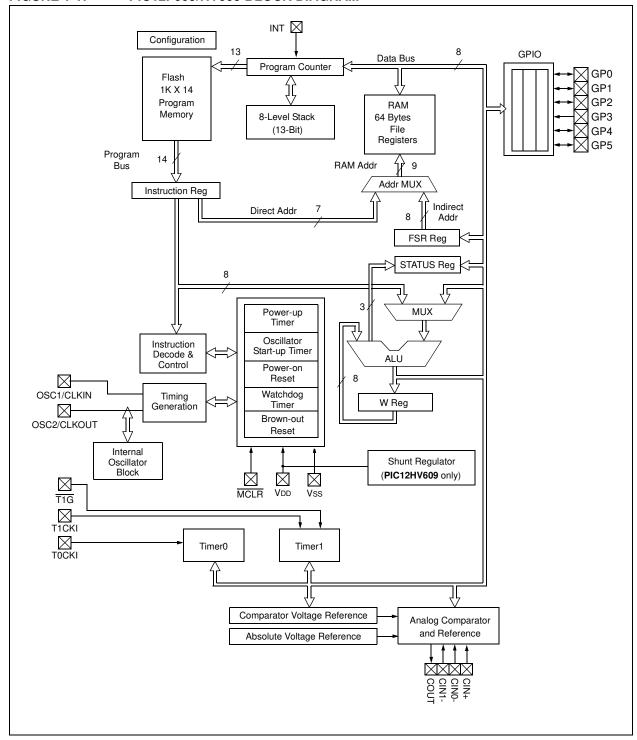
To determine if an errata sheet exists for a particular device, please check with one of the following:

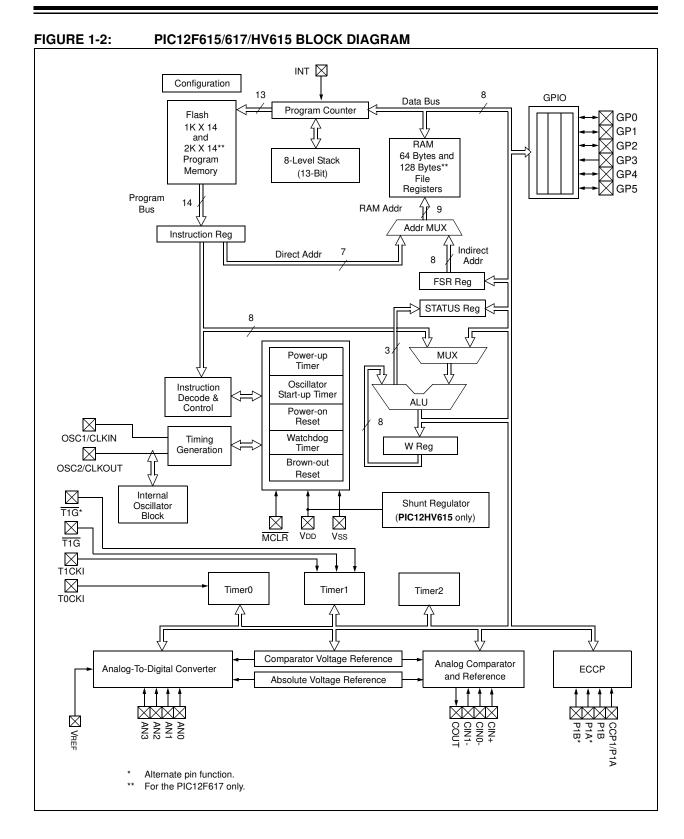
- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.


1.0 DEVICE OVERVIEW


The PIC12F609/615/617/12HV609/615 devices are covered by this data sheet. They are available in 8-pin PDIP, SOIC, MSOP and DFN packages.

Block Diagrams and pinout descriptions of the devices are as follows:

- PIC12F609/HV609 (Figure 1-1, Table 1-1)
- PIC12F615/617/HV615 (Figure 1-2, Table 1-2)

FIGURE 1-1: PIC12F609/HV609 BLOCK DIAGRAM

TABLE 1-1: PIC12F609/HV609 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
GP0/CIN+/ICSPDAT	GP0	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
	CIN+	AN	_	Comparator non-inverting input
	ICSPDAT	ST	CMOS	Serial Programming Data I/O
GP1/CIN0-/ICSPCLK	GP1	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
	CIN0-	AN	_	Comparator inverting input
	ICSPCLK	ST	_	Serial Programming Clock
GP2/T0CKI/INT/COUT	GP2	ST	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
	T0CKI	ST	_	Timer0 clock input
	INT	ST	_	External Interrupt
	COUT	_	CMOS	Comparator output
GP3/MCLR/VPP	GP3	TTL	_	General purpose input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	VPP	HV	_	Programming voltage
GP4/CIN1-/T1G/OSC2/	GP4	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
CLKOUT	CIN1-	AN	_	Comparator inverting input
	T1G	ST	_	Timer1 gate (count enable)
	OSC2	_	XTAL	Crystal/Resonator
	CLKOUT	_	CMOS	Fosc/4 output
GP5/T1CKI/OSC1/CLKIN	GP5	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
	T1CKI	ST	_	Timer1 clock input
	OSC1	XTAL	_	Crystal/Resonator
	CLKIN	ST	_	External clock input/RC oscillator connection
VDD	VDD	Power	_	Positive supply
Vss	Vss	Power	_	Ground reference

Legend: AN=Analog input or output

CMOS = CMOS compatible input or output HV= High Voltage

XTAL=Crystal

TABLE 1-2: PIC12F615/617/HV615 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
GP0/AN0/CIN+/P1B/ICSPDAT	GP0	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change
	AN0	AN	_	A/D Channel 0 input
	CIN+	AN	_	Comparator non-inverting input
	P1B	_	CMOS	PWM output
	ICSPDAT	ST	CMOS	Serial Programming Data I/O
GP1/AN1/CIN0-/VREF/ICSPCLK	GP1	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change
	AN1	AN	_	A/D Channel 1 input
	CIN0-	AN	_	Comparator inverting input
	VREF	AN	_	External Voltage Reference for A/D
	ICSPCLK	ST	_	Serial Programming Clock
GP2/AN2/T0CKI/INT/COUT/CCP1/ P1A	GP2	ST	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
	AN2	AN	_	A/D Channel 2 input
	T0CKI	ST	_	Timer0 clock input
	INT	ST	_	External Interrupt
	COUT	_	CMOS	Comparator output
	CCP1	ST	CMOS	Capture input/Compare input/PWM output
	P1A	_	CMOS	PWM output
GP3/T1G*/MCLR/VPP	GP3	TTL	_	General purpose input with interrupt-on-change
	T1G*	ST	_	Timer1 gate (count enable), alternate pin
	MCLR	ST	_	Master Clear w/internal pull-up
	VPP	HV	_	Programming voltage
GP4/AN3/CIN1-/T1G/P1B*/OSC2/ CLKOUT	GP4	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change
	AN3	AN	_	A/D Channel 3 input
	CIN1-	AN	_	Comparator inverting input
	T1G	ST	_	Timer1 gate (count enable)
	P1B*	_	CMOS	PWM output, alternate pin
	OSC2	_	XTAL	Crystal/Resonator
	CLKOUT	_	CMOS	Fosc/4 output
GP5/T1CKI/P1A*/OSC1/CLKIN	GP5	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
	T1CKI	ST	_	Timer1 clock input
	P1A*		CMOS	PWM output, alternate pin
	OSC1	XTAL		Crystal/Resonator
	CLKIN	ST		External clock input/RC oscillator connection
VDD	VDD	Power	_	Positive supply
Vss	Vss	Power	_	Ground reference

^{*} Alternate pin function.

 Legend:
 AN=Analog input or output
 CMOS=CMOS compatible input or output
 HV= High Voltage

 ST=Schmitt Trigger input with CMOS levels
 TTL = TTL compatible input
 XTAL=Crystal

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC12F609/615/617/12HV609/615 has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h-03FFh) for the PIC12F609/615/12HV609/615 is physically implemented. For the PIC12F617, the first 2K x 14 (0000h-07FFh) is physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 1K x 14 space for PIC12F609/615/12HV609/615 devices, and within the first 2K x 14 space for the PIC12F617 device. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC12F609/615/12HV609/615

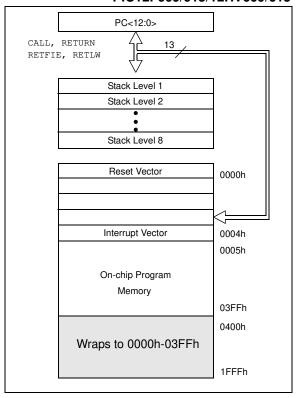
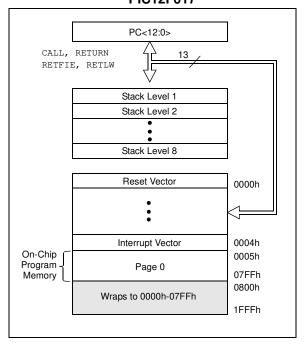



FIGURE 2-2: PROGRAM MEMORY MAP AND STACK FOR THE PIC12F617

2.2 Data Memory Organization

The data memory (see Figure 2-3) is partitioned into two banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. Register locations 40h-7Fh in Bank 0 are General Purpose Registers, implemented as static RAM. For the PIC12F617, the register locations 20h-7Fh in Bank 0 and A0h-EFh in Bank 1 are general purpose registers implemented as Static RAM. Register locations F0h-FFh in Bank 1 point to addresses 70h-7Fh in Bank 0. All other RAM is unimplemented and returns '0' when read. The RP0 bit of the STATUS register is the bank select bit.

RP0

- 0 → Bank 0 is selected
- $1 \rightarrow Bank 1 is selected$

Note: The IRP and RP1 bits of the STATUS register are reserved and should always be maintained as '0's.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64×8 in the PIC12F609/615/12HV609/615, and as 128×8 in the PIC12F617. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-3: DATA MEMORY MAP OF THE PIC12F609/HV609

	File		File
1 11 1 1 1 1 1 1 1 1 1	Address		Addres
Indirect Addr.(1)	00h	Indirect Addr.(1)	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
GPIO	05h	TRISIO	85h
	06h		86h
	07h		87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCTUNE	90h
	11h		91h
	12h		92h
	13h		93h
	14h		94h
	15h	WPU	95h
	16h	IOC	96h
	17h		97h
	18h		98h
VRCON	19h		99h
CMCON0	1Ah		9Ah
	1Bh		9Bh
CMCON1	1Ch		9Ch
	1Dh		9Dh
	1Eh		9Eh
	1Fh	ANSEL	9Fh
	20h	ANOLL	A0h
General	3Fh 40h		
Purpose Registers 64 Bytes	40n 6Fh		EFh
	70h	A	F0h
Accesses 70h-7Fh	7Fh	Accesses 70h-7Fh	FFh
Bank 0		Bank 1	
•	ata memor ıysical regi	y locations, read as '0 ster.	

FIGURE 2-4: DATA MEMORY MAP OF THE PIC12F615/617/HV615

Indirect Addr.(1)	Address 00h	Indirect Addr.(1)	ddres 80h
TMR0	00h	OPTION REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	03n 04h	FSR	84h
GPIO	-	TRISIO	
GFIO	05h	TRISIO	85h
	06h		86h
	07h		87h
	08h		88h
DOLATII.	09h	DCL ATU	89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dł
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCTUNE	90h
TMR2	11h		91h
T2CON	12h	PR2	92h
CCPR1L	13h	APFCON	93h
CCPR1H	14h		94h
CCP1CON	15h	WPU	95h
PWM1CON	16h	IOC	96h
ECCPAS	17h	(0)	97h
	18h	PMCON1 ⁽²⁾	98h
VRCON	19h	PMCON2 ⁽²⁾	99h
CMCON0	1Ah	PMADRL ⁽²⁾	9Ah
	1Bh	PMADRH ⁽²⁾	9Bh
CMCON1	1Ch	PMDATL ⁽²⁾	9Ch
	1Dh	PMDATH ⁽²⁾	9Dł
ADRESH	1Eh	ADRESL	9Eh
ADCON0	1Fh	ANSEL	9Fh
General Purpose Registers 96 Bytes from 20h-7Fh ⁽²⁾	20h	General Purpose Registers 32 Bytes ⁽²⁾ Unimplemented for	A0h
Unimplemented for		PIC12F615/HV615	DE:
PIC12F615/HV615			BFr C0h
	3Fh		5011
General	40h		
Purpose Registers 64 Bytes	6Fh		EFh
Accesses 70h-7Fh	70h	Accesses 70h-7Fh	F0h
Bank 0	7Fh	Bank 1	FF
Unimplemented da	ıta memor ysical regi:	y locations, read as '0'.	

TABLE 2-1: PIC12F609/HV609 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0

IADL	L Z-1.	TIGIZI 009/11/009 SI EGIAE I GROTION REGISTERIS SOMMATTI							07		_
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 0											
00h	INDF	Addressing	this location	uses content	s of FSR to a	ddress data	memory (not	a physical r	egister)	xxxx xxxx	25, 115
01h	TMR0	Timer0 Mod	ule's Registe	er						xxxx xxxx	53, 115
02h	PCL			Least Signifi	cant Byte					0000 0000	25, 115
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 115
04h	FSR	Indirect Data	a Memory Ad	dress Pointe	r					xxxx xxxx	25, 115
05h	GPIO	_	_	GP5	GP4	GP3	GP2	GP1	GP0	x0 x000	43, 115
06h	_	Unimplemen	nted							_	_
07h	_	Unimplemen	nted							_	_
08h	_	Unimplemen	nted							_	_
09h	_	Unimplemen	mplemented								_
0Ah	PCLATH	_	— — Write Buffer for upper 5 bits of Program Counter								25, 115
0Bh	INTCON	GIE	GIE PEIE TOIE INTE GPIE TOIF INTF GPIF								20, 115
0Ch	PIR1	_	_	_	_	CMIF	_	_	TMR1IF	00	22, 115
0Dh	_	Unimplemen	nted							_	_
0Eh	TMR1L	Holding Reg	ister for the	Least Signific	ant Byte of t	he 16-bit TM	R1 Register			xxxx xxxx	57, 115
0Fh	TMR1H	Holding Reg	ister for the	Most Signific	ant Byte of th	ne 16-bit TMF	R1 Register			xxxx xxxx	57, 115
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	62, 115
11h	_	Unimplemen	nted							_	_
12h	_	Unimplemen	nted							_	_
13h	_	Unimplemen	nted							_	_
14h	_	Unimplemen	nted							_	_
15h	_	Unimplemen	nted							_	_
16h	_	Unimplemen	nted							_	_
17h	_	Unimplemen	nted							_	_
18h	_	Unimplemen	nted							_	_
19h	VRCON	CMVREN	_	VRR	FVREN	VR3	VR2	VR1	VR0	0-00 0000	76, 116
1Ah	CMCON0	CMON	COUT	CMOE	CMPOL		CMR		CMCH	0000 -0-0	72, 116
1Bh	_					_		_		_	_
1Ch	CMCON1	_	_	_	T1ACS	CMHYS	_	T1GSS	CMSYNC	0 0-10	73, 116
1Dh	_	Unimplemen	nted							_	_
1Eh	_	Unimplemen	nted							_	_
1Fh	_	Unimplemen	nted							_	_

 $\textbf{Legend:} \qquad - = \text{Unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on conditions read as `0', u = unchanged, x = unknown, q = value depends on conditions read as `0', u = unchanged, x = unknown, q = value depends on conditions read as `0', u = unchanged, x = unknown, q = value depends on conditions read as `0', u = unknown, q = value depends on conditions read as `0', u = unknown, q = value depends on conditions read as `0', u = unknown, q = value depends on conditions read as `0', u = unknown, q = value depends on conditions read as `0', u = unknown, q = value depends on conditions read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u = unknown, q = value depends read as `0', u =$

^{1:} IRP and RP1 bits are reserved, always maintain these bits clear.

^{2:} Read only register.

TABLE 2-2: PIC12F615/617/HV615 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 0											
00h	INDF	Addressing	this location (uses content	s of FSR to a	ddress data	memory (not	a physical re	egister)	xxxx xxxx	25, 116
01h	TMR0	Timer0 Mod	ule's Registe	r						xxxx xxxx	53, 116
02h	PCL	Program Co	unter's (PC)	Least Signifi	cant Byte					0000 0000	25, 116
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 116
04h	FSR	Indirect Data	a Memory Ad	dress Pointe	r					xxxx xxxx	25, 116
05h	GPIO	_	_	GP5	GP4	GP3	GP2	GP1	GP0	x0 x000	43, 116
06h	_	Unimplemen	nted							_	_
07h	_	Unimplemen	nted							_	_
08h	_	Unimplemen	nted		_	_					
09h	_	Unimplemen	nimplemented								
0Ah	PCLATH	_	_	unter	0 0000	25, 116					
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	20, 116
0Ch	PIR1	_	ADIF	CCP1IF	_	CMIF	_	TMR2IF	TMR1IF	-00- 0-00	22, 116
0Dh	_	Unimplemen	nted							_	_
0Eh	TMR1L	Holding Reg	ister for the I	_east Signific	ant Byte of th	ne 16-bit TMI	R1 Register			xxxx xxxx	57, 116
0Fh	TMR1H	Holding Reg	ister for the I	Most Signific	ant Byte of th	e 16-bit TMF	R1 Register			xxxx xxxx	57, 116
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	62, 116
11h	TMR2 ⁽³⁾	Timer2 Mod	ule Register							0000 0000	65, 116
12h	T2CON ⁽³⁾	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	66, 116
13h	CCPR1L ⁽³⁾	Capture/Cor	mpare/PWM	Register 1 Lo	ow Byte					XXXX XXXX	90, 116
14h	CCPR1H ⁽³⁾	Capture/Cor	mpare/PWM	Register 1 H	igh Byte					XXXX XXXX	90, 116
15h	CCP1CON ⁽³⁾	P1M	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 0000	89, 116
16h	PWM1CON ⁽³⁾	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	105, 116
17h	ECCPAS ⁽³⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	102 , 116
18h	_	Unimplemen	nted							_	_
19h	VRCON	CMVREN	_	VRR	FVREN	VR3	VR2	VR1	VR0	0-00 0000	76, 116
1Ah	CMCON0	CMON	COUT	CMOE	CMPOL	_	CMR	_	CMCH	0000 -0-0	72, 116
1Bh						_		_		_	_
1Ch	CMCON1	_	_	_	T1ACS	CMHYS	_	T1GSS	CMSYNC	0 0-10	73, 116
1Dh	_	Unimplemen	nted		_	_					
1Eh	ADRESH(2, 3)	Most Signific	cant 8 bits of	the left shifte	ed A/D result	or 2 bits of ri	ght shifted re	sult		xxxx xxxx	85, 116
1Fh	ADCON0 ⁽³⁾	ADFM	VCFG	_	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	84, 116

 $\textbf{Legend:} \qquad -= \text{Unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on conditions read as `0', u = unchanged, x = unknown, q = value depends on conditions read as `0', u = unchanged, x = unknown, q = value depends on conditions read as `0', u = unknown, q = value depends on conditions read as `0', u = unknown, q = value depends read as `0', u$

Note 1: IRP and RP1 bits are reserved, always maintain these bits clear.

2: Read only register.

3: PIC12F615/617/HV615 only.

TABLE 2-3: PIC12F609/HV609 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 1											
80h	INDF	Addressing	this location ι	uses contents	of FSR to a	address data r	nemory (not	a physical re	egister)	xxxx xxxx	25, 116
81h	OPTION_RE G	GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	19, 116
82h	PCL	Program Co	unter's (PC)	Least Signific	ant Byte					0000 0000	25, 116
83h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 116
84h	FSR	Indirect Data	a Memory Ad	dress Pointer						xxxx xxxx	25, 116
85h	TRISIO	_	-	TRISIO5	TRISIO4	TRISIO3 ⁽⁴⁾	TRISIO2	TRISIO1	TRISIO0	11 1111	44, 116
86h		Unimplemen	nted							_	_
87h		Unimplemen									_
88h	_	Unimplemer	nplemented							_	_
89h	_	Unimplemen	nted							_	_
8Ah	PCLATH	_	— — Write Buffer for upper 5 bits of Program Counter							0 0000	25, 116
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF ⁽³⁾	0000 0000	20, 116
8Ch	PIE1	_	_	_	_	CMIE		_	TMR1IE	00	21, 116
8Dh	_	Unimplemen	nted							_	_
8Eh	PCON	_	_	_	_	_		POR	BOR	qq	23, 116
8Fh	_	Unimplemen	nted							_	_
90h	OSCTUNE	_	_	_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	41, 116
91h	_	Unimplemen	nted							_	_
92h	_	Unimplemen	nted							_	_
93h	_	Unimplemen	nted							_	_
94h	_	Unimplemen	nted							_	_
95h	WPU ⁽²⁾	_	_	WPU5	WPU4	_	WPU2	WPU1	WPU0	11 -111	46, 116
96h	IOC	_	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	46, 116
97h	_	Unimplemen	nted							_	_
98h	_	Unimplemen	nted							_	_
99h	_	Unimplemen	nted							_	_
9Ah	_	Unimplemen	Unimplemented							_	_
9Bh	-	Unimplemen	Unimplemented							_	_
9Ch	_	Unimplemen	Jnimplemented								_
9Dh	_	Unimplemen	nted							_	_
9Eh	_	Unimplemen	nted							_	_
9Fh	ANSEL	_	_	_	_	ANS3	_	ANS1	ANS0	1-11	45, 117

Legend: - = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: IRP and RP1 bits are reserved, always maintain these bits clear.

^{2:} GP3 pull-up is enabled when MCLRE is '1' in the Configuration Word register.

^{3:} MCLR and WDT Reset does not affect the previous value data latch. The GPIF bit will clear upon Reset but will set again if the mismatch exists.

^{4:} TRISIO3 always reads as '1' since it is an input only pin.

TABLE 2-4: PIC12F615/617/HV615 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 1											
80h	INDF	Addressing	this location	uses content	s of FSR to a	ddress data	memory (not	a physical rec	gister)	xxxx xxxx	25, 116
81h	OPTION_REG	GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	19, 116
82h	PCL	Program Co	unter's (PC)	Least Signifi	cant Byte		_	_	_	0000 0000	25, 116
83h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 116
84h	FSR	Indirect Data	a Memory Ad	ldress Pointe	er					xxxx xxxx	25, 116
85h	TRISIO	I	I	TRISIO5	TRISIO4	TRISIO3 ⁽⁴⁾	TRISIO2	TRISIO1	TRISIO0	11 1111	44, 116
86h	1	Unimplemen	nted							_	_
87h	1	Unimplemen	nted							_	_
88h	1	Unimplemen	nted							_	_
89h		Unimplemen	nted							_	_
8Ah	PCLATH	-	_	_	Writ	e Buffer for u	pper 5 bits of	Program Cou	unter	0 0000	25, 116
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	TOIF	INTF	GPIF ⁽³⁾	0000 0000	20, 116
8Ch	PIE1	-	ADIE	CCP1IE	_	CMIE	_	TMR2IE	TMR1IE	-00- 0-00	21, 116
8Dh	_	Unimplemen	nted							_	_
8Eh	PCON	-	_	_	_	_	_	POR	BOR	qq	23, 116
8Fh	_	Unimplemen	nted							_	_
90h	OSCTUNE	-	_	_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	41, 116
91h	_	Unimplemen	nted							_	_
92h	PR2	Timer2 Mod	ule Period R	egister						1111 1111	65, 116
93h	APFCON	-	_	_	T1GSEL	_	_	P1BSEL	P1ASEL	000	21, 116
94h	_	Unimplemen	nted							_	_
95h	WPU ⁽²⁾	I	I	WPU5	WPU4	I	WPU2	WPU1	WPU0	11 -111	46, 116
96h	IOC	I	I	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	46, 116
97h	1	Unimplemen	nted							_	_
98h	PMCON1 ⁽⁷⁾	-	_	_	_	_	WREN	WR	RD	000	29
99h	PMCON2 ⁽⁷⁾	Program Me	emory Contro	l Register 2	(not a physic	al register).					_
9Ah	PMADRL ⁽⁷⁾	PMADRL7	PMADRL6	PMADRL5	PMADRL4	PMADRL3	PMADRL2	PMADRL1	PMADRL0	0000 0000	28
9Bh	PMADRH ⁽⁷⁾	_	_	_	_	_	PMADRH2	PMADRH1	PMADRH0	000	28
9Ch	PMDATL ⁽⁷⁾	PMDATL7	PMDATL6	PMDATL5	PMDATL4	PMDATL3	PMDATL2	PMDATL1	PMDATL0	0000 0000	28
9Dh	PMDATH ⁽⁷⁾	_	_	Program Me	emory Data F	Register High	Byte.			00 0000	28
9Eh	ADRESL ^(5, 6)	Least Signif	icant 2 bits o	f the left shift	ed result or 8	B bits of the rig	ght shifted res	sult		xxxx xxxx	85, 117
9Fh	ANSEL	_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	45, 117

Legend: - = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

IRP and RP1 bits are reserved, always maintain these bits clear.
GP3 pull-up is enabled when MCLRE is '1' in the Configuration Word register.

- MCLR and WDT Reset does not affect the previous value data latch. The GPIF bit will clear upon Reset but will set again if the mismatch 3:
- TRISIO3 always reads as '1' since it is an input only pin.
- Read only register. 5:
- PIC12F615/617/HV615 only. 6:
- PIC12F617 only.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- · the arithmetic status of the ALU
- · the Reset status

1 -----

· the bank select bits for data memory (RAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as `000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see the Section 14.0 "Instruction Set Summary".

- Note 1: Bits IRP and RP1 of the STATUS register are not used by the PIC12F609/615/617/12HV609/615 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a Borrow and <u>Digit Borrow</u> out bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

REGISTER 2-1: STATUS: STATUS REGISTER

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IRP: This bit is reserved and should be maintained as '0'
bit 6	RP1: This bit is reserved and should be maintained as '0'
bit 5	RP0: Register Bank Select bit (used for direct addressing)
	1 = Bank 1 (80h - FFh)
	0 = Bank 0 (00h - 7Fh)
bit 4	TO: Time-out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction
	0 = A WDT time-out occurred
bit 3	PD: Power-down bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	1 = The result of an arithmetic or logic operation is zero
	0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions), For Borrow, the polarity is reversed.
	1 = A carry-out from the 4th low-order bit of the result occurred
	0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

2.2.2.2 **OPTION Register**

The OPTION register is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- · External GP2/INT interrupt
- Timer0
- Weak pull-ups on GPIO

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit to '1' of the OPTION register. See Section 6.1.3 "Software Programmable Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GPPU: GPIO Pull-up Enable bit
	1 = GPIO pull-ups are disabled
	0 = GPIO pull-ups are enabled by individual PORT latch values
bit 6	INTEDG: Interrupt Edge Select bit
	1 = Interrupt on rising edge of GP2/INT pin
	0 = Interrupt on falling edge of GP2/INT pin
bit 5	T0CS: Timer0 Clock Source Select bit
	1 = Transition on GP2/T0CKI pin
	0 = Internal instruction cycle clock (Fosc/4)
bit 4	T0SE: Timer0 Source Edge Select bit
	1 = Increment on high-to-low transition on GP2/T0CKI pin
	0 = Increment on low-to-high transition on GP2/T0CKI pin

bit 3 PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS<2:0>: Prescaler Rate Select bits

BIT VALUE	TIMER0 RATE	WDT RATE
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

2.2.2.3 INTCON Register

Legend:

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO change and external GP2/INT pin interrupts.

Note:

Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | T0IE | INTE | GPIE | T0IF | INTF | GPIF |
| bit 7 | | | | | | | bit 0 |

9						
R = Readable bit		W = Writable bit	U = Unimplemented bit,	nented bit, read as '0'		
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	x = Bit is unknown	
bit 7		nterrupt Enable bit all unmasked interrupts all interrupts				
bit 6	t 6 PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts					
bit 5	1 = Enables t	Overflow Interrupt Enal he Timer0 interrupt the Timer0 interrupt	ble bit			
hit 4	INTE: GP2/IN	IT External Interrunt En	able hit			

bit 4

INTE: GP2/INT External Interrupt Enable bit

1 = Enables the GP2/INT external interrupt

0 = Disables the GP2/INT external interrupt

bit 3

GPIE: GPIO Change Interrupt Enable bit (1)

1 = Enables the GPIO change interrupt

0 = Disables the GPIO change interrupt

bit 2 **T0IF:** Timer0 Overflow Interrupt Flag bit⁽²⁾

1 = Timer0 register has overflowed (must be cleared in software)

0 = Timer0 register did not overflow

bit 1 INTF: GP2/INT External Interrupt Flag bit

1 = The GP2/INT external interrupt occurred (must be cleared in software)

0 = The GP2/INT external interrupt did not occur

bit 0 GPIF: GPIO Change Interrupt Flag bit

1 = When at least one of the GPIO <5:0> pins changed state (must be cleared in software)

0 = None of the GPIO <5:0> pins have changed state

Note 1: IOC register must also be enabled.

2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

2.2.2.4 PIE1 Register

The PIE1 register contains the Peripheral Interrupt Enable bits, as shown in Register 2-4.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	-	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	ADIE: A/D Converter (ADC) Interrupt Enable bit(1)
	1 = Enables the ADC interrupt0 = Disables the ADC interrupt
bit 5	CCP1IE: CCP1 Interrupt Enable bit ⁽¹⁾
	1 = Enables the CCP1 interrupt0 = Disables the CCP1 interrupt
bit 4	Unimplemented: Read as '0'
bit 3	CMIE: Comparator Interrupt Enable bit
	1 = Enables the Comparator interrupt0 = Disables the Comparator interrupt
bit 2	Unimplemented: Read as '0'
bit 1	TMR2IE: Timer2 to PR2 Match Interrupt Enable bit(1)
	1 = Enables the Timer2 to PR2 match interrupt0 = Disables the Timer2 to PR2 match interrupt
bit 0	TMR1IE: Timer1 Overflow Interrupt Enable bit
	1 = Enables the Timer1 overflow interrupt

0 = Disables the Timer1 overflow interrupt

Note 1: PIC12F615/617/HV615 only. PIC12F609/HV609 unimplemented, read as '0'.

2.2.2.5 PIR1 Register

The PIR1 register contains the Peripheral Interrupt flag bits, as shown in Register 2-5.

Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF
bit 7							bit 0

Note:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '0' bit 6 ADIF: A/D Interrupt Flag bit⁽¹⁾

1 = A/D conversion complete

0 = A/D conversion has not completed or has not been started

bit 5 **CCP1IF:** CCP1 Interrupt Flag bit⁽¹⁾

Capture mode:

1 = A TMR1 register capture occurred (must be cleared in software)

0 = No TMR1 register capture occurred

Compare mode:

1 = A TMR1 register compare match occurred (must be cleared in software)

0 = No TMR1 register compare match occurred

PWM mode:

Unused in this mode

bit 4 Unimplemented: Read as '0'

bit 3 CMIF: Comparator Interrupt Flag bit

1 = Comparator output has changed (must be cleared in software)

0 = Comparator output has not changed

bit 2 Unimplemented: Read as '0'

bit 1 TMR2IF: Timer2 to PR2 Match Interrupt Flag bit⁽¹⁾

1 = Timer2 to PR2 match occurred (must be cleared in software)

0 = Timer2 to PR2 match has not occurred

bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit

1 = Timer1 register overflowed (must be cleared in software)

0 = Timer1 has not overflowed

Note 1: PIC12F615/617/HV615 only. PIC12F609/HV609 unimplemented, read as '0'.

2.2.2.6 PCON Register

The Power Control (PCON) register (see Table 12-2) contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- · Watchdog Timer Reset (WDT)
- External MCLR Reset

The \overline{PCON} register also controls the software enable of the \overline{BOR} .

The PCON register bits are shown in Register 2-6.

REGISTER 2-6: PCON: POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0 ⁽¹⁾
_	_	_	_	_	_	POR	BOR
bit 7 bit 0						bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2

Dimplemented: Read as '0'

POR: Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 **BOR:** Brown-out Reset Status bit 1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Note 1: Reads as '0' if Brown-out Reset is disabled.

2.2.2.7 APFCON Register (PIC12F615/617/HV615 only)

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. For this device, the P1A, P1B and Timer1 Gate functions can be moved between different pins.

The APFCON register bits are shown in Register 2-7.

REGISTER 2-7: APFCON:ALTERNATE PIN FUNCTION REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	_	_	T1GSEL	_	_	P1BSEL	P1ASEL
bit 7 bit 0							

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-5 **Unimplemented:** Read as '0'

bit 4 T1GSEL: TMR1 Input Pin Select bit

1 = T1G function is on $GP3/\overline{T1G^{(2)}/MCLR}/VPP$

0 = T1G function is on GP4/AN3/CIN1-/T1G/P1B⁽²⁾/OSC2/CLKOUT

bit 3-2 **Unimplemented:** Read as '0'

bit 1 P1BSEL: P1B Output Pin Select bit

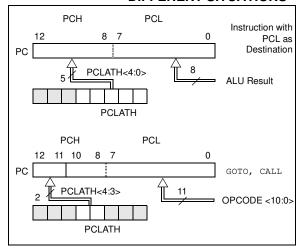
1 = P1B function is on GP4/AN3/CIN1-/T1G/P1B(2)/OSC2/CLKOUT

0 = P1B function is on GP0/AN0/CIN+/P1B/ICSPDAT

bit 0 P1ASEL: P1A Output Pin Select bit

1 = P1A function is on GP5/T1CKI/P1A $^{(2)}$ /OSC1/CLKIN

0 = P1A function is on GP2/AN2/T0CKI/INT/COUT/CCP1/P1A


Note 1: PIC12F615/617/HV615 only.

2: Alternate pin function.

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in Figure 2-5 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-5 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper 5 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register.

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower 8 bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

For more information refer to Application Note AN556, "Implementing a Table Read" (DS00556).

2.3.2 STACK

The PIC12F609/615/617/12HV609/615 Family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no Status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 2-6.

A simple program to clear RAM location 40h-7Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT ADDRESSING

	MOVLW	0x40	;initialize pointer		
	MOVWF	FSR	;to RAM		
NEXT	CLRF	INDF	;clear INDF register		
	INCF	FSR	;inc pointer		
	BTFSS	FSR,7	;all done?		
	GOTO	NEXT	;no clear next		
CONTINUE			;yes continue		