imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PIC16CR7X Data Sheet

28/40-Pin, 8-Bit CMOS ROM Microcontrollers

© 2007 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and water fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

28/40-Pin, 8-Bit CMOS ROM Microcontrollers

Devices Included in this Data Sheet:

- PIC16CR73PIC16CR74
- PIC16CR77

PIC16CR76

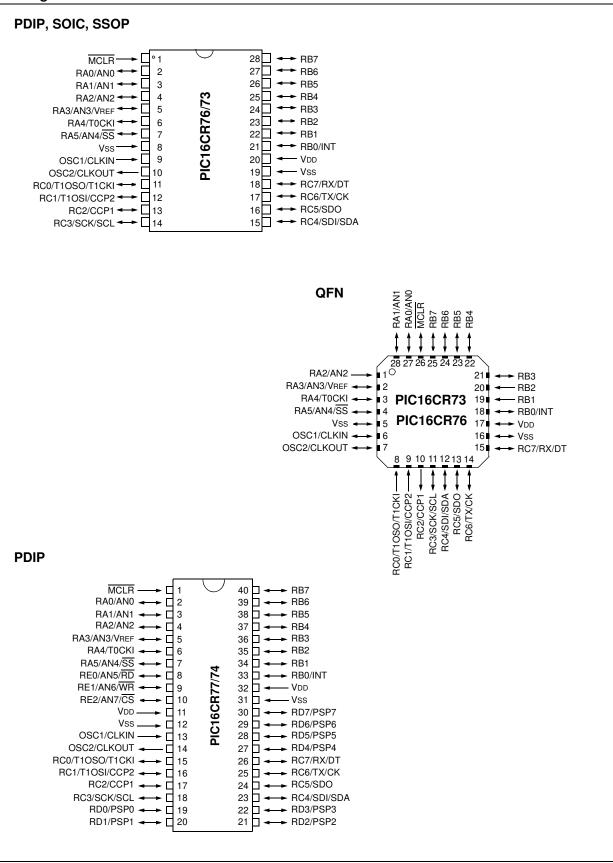
High-Performance RISC CPU:

- High-performance RISC CPU
- · Only 35 single-word instructions to learn
- All single-cycle instructions except for program branches which are two-cycle
- Operating speed: DC 20 MHz clock input DC – 200 ns instruction cycle
- Up to 8K x 14 words of ROM Program Memory, Up to 368 x 8 bytes of Data Memory (RAM)
- Function compatible to the PIC16F73/74/76/77
- Pinout compatible to the PIC16F873/874/876/877
- Interrupt capability (up to 12 sources)
- Eight-level deep hardware stack
- · Direct, Indirect and Relative Addressing modes
- Processor read access to program memory

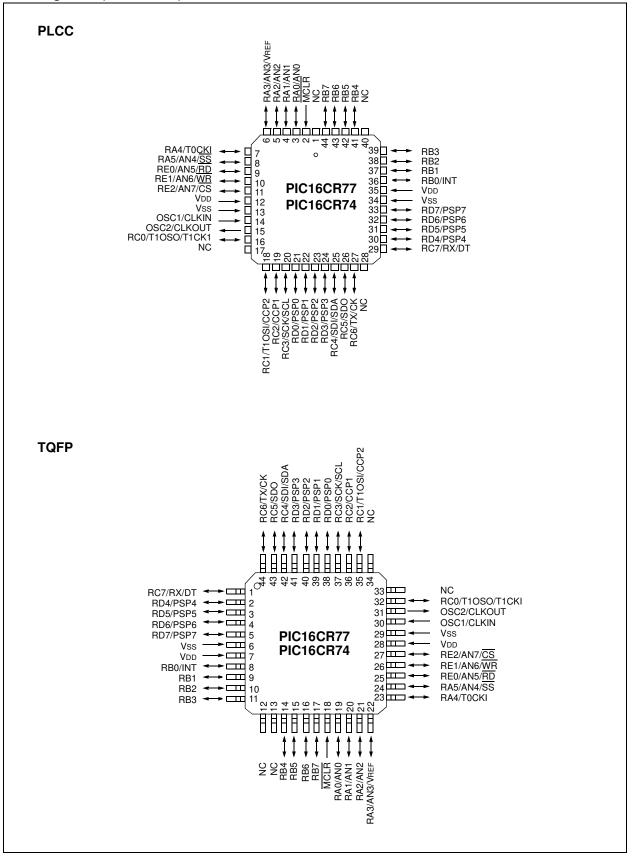
Special Microcontroller Features:

- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Power-Saving Sleep mode
- Selectable oscillator options

Peripheral Features:


- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during Sleep via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Two Capture, Compare, PWM modules:
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
- 8-bit, up to 8-channel Analog-to-Digital converter
- Synchronous Serial Port (SSP) with SPI (Master mode) and I²C[™] (Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
- Parallel <u>Slave Port</u> (P<u>SP</u>), 8-bits wide with external RD, WR and CS controls (40/44-pin only)
- Brown-out detection circuitry for Brown-out Reset (BOR)

CMOS Technology:


- · Low-power, high-speed CMOS ROM technology
- · Fully static design
- Wide operating voltage range: 2.0V to 5.5V
- · High Sink/Source Current: 25 mA
- Industrial temperature range
- Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz TBD
 - 20 μA typical @ 3V, 32 kHz TBD
 - <1 μA typical standby current TBD

	Program Data		Data			SSP			-	
Device	Memory (# Single Word Instructions)	SRAM (Bytes)	I/O	Interrupts	8-bit A/D (ch)	CCP (PWM)	SPI (Master)	l ² C™ (Slave)	USART	Timers 8/16-bit
PIC16CR73	4096	192	22	11	5	2	Yes	Yes	Yes	2/1
PIC16CR74	4096	192	33	12	8	2	Yes	Yes	Yes	2/1
PIC16CR76	8192	368	22	11	5	2	Yes	Yes	Yes	2 / 1
PIC16CR77	8192	368	33	12	8	2	Yes	Yes	Yes	2/1

Pin Diagrams

Pin Diagrams (Continued)

Table of Contents

Device Overview	5
1 Internation	
Reading Program Memory 2	<u>29</u>
O Ports	31
imer0 Module4	43
imer1 Module4	17
imer2 Module	51
Capture/Compare/PWM Modules 5	53
Synchronous Serial Port (SSP) Module 5	
Jniversal Synchronous Asynchronous Receiver Transmitter (USART)	39
Analog-to-Digital Converter (A/D) Module 8	33
Special Features of the CPU	
nstruction Set Summary)5
Development Support	
Electrical Characteristics	
DC and AC Characteristics Graphs and Tables	39
Packaging Information	19
Appendix A: Revision History	
Appendix B: Device Differences	59
Appendix C: Conversion Considerations	
The Microchip Web Site	37
Customer Change Notification Service	
Customer Support 16	37
Reader Response	38
Product Identification System	39

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

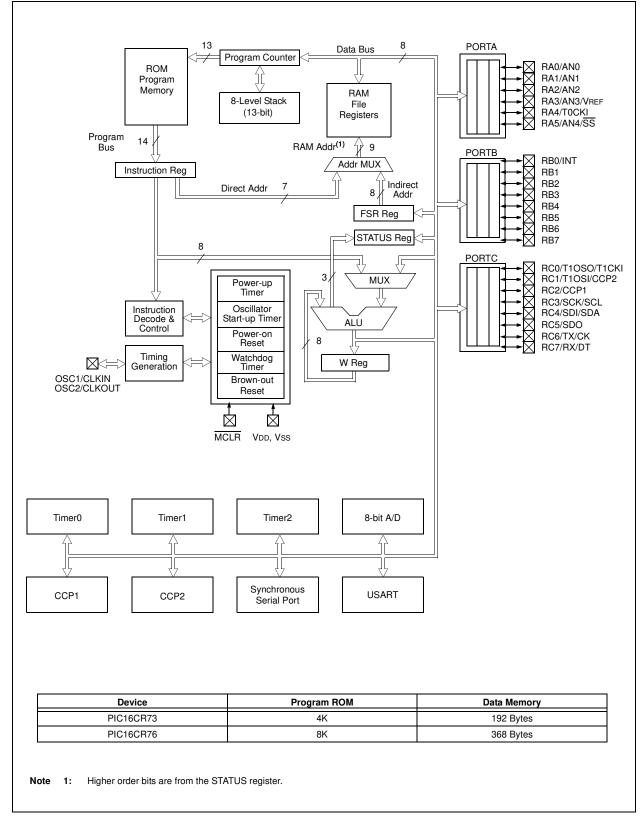
1.0 DEVICE OVERVIEW

This document contains device specific information about the following devices:

- DSTEMP
- DSTEMP
- DSTEMP
- DSTEMP

PIC16CR73/76 devices are available only in 28-pin packages, while PIC16CR74/77 devices are available in 40-pin and 44-pin packages. All devices in the PIC16CR7X family share common architecture, with the following differences:

- The DSTEMP and DSTEMP have one-half of the total on-chip memory of the DSTEMP and DSTEMP
- The 28-pin devices have 3 I/O ports, while the 40/44-pin devices have 5
- The 28-pin devices have 11 interrupts, while the 40/44-pin devices have 12
- The 28-pin devices have 5 A/D input channels, while the 40/44-pin devices have 8
- The Parallel Slave Port is implemented only on the 40/44-pin devices


The available features are summarized in Table 1-1. Block diagrams of the PIC16CR73/76 and PIC16CR74/77 devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

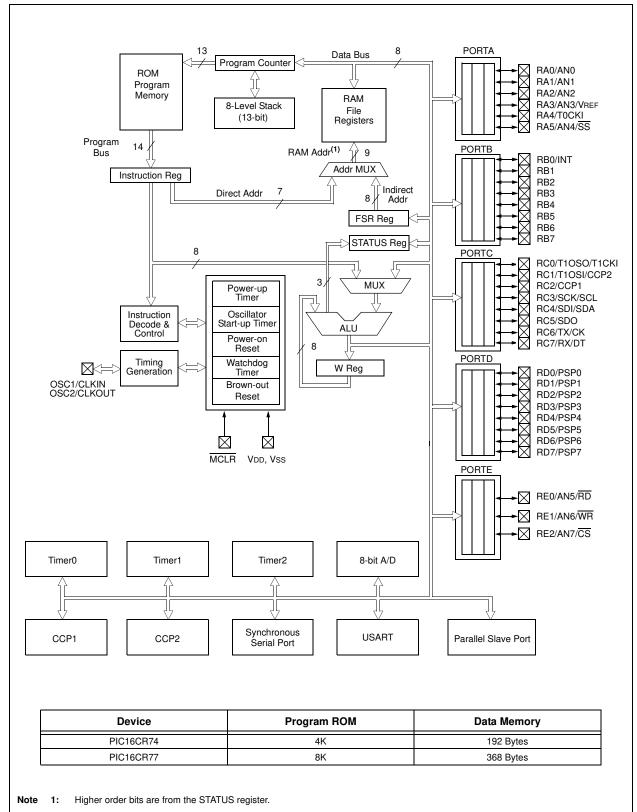

Key Features	PIC16CR73	PIC16CR74	PIC16CR76	PIC16CR77
Operating Frequency	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
ROM Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
Interrupts	11	12	11	12
I/O Ports	Ports A,B,C	Ports A,B,C,D,E	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3	3	3
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	SSP, USART	SSP, USART	SSP, USART	SSP, USART
Parallel Communications	—	PSP	_	PSP
8-bit Analog-to-Digital Module	5 Input Channels	8 Input Channels	5 Input Channels	8 Input Channels
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions
Packaging	28-pin DIP 28-pin SOIC 28-pin SSOP 28-pin MLF	40-pin PDIP 44-pin PLCC 44-pin TQFP	28-pin DIP 28-pin SOIC 28-pin SSOP 28-pin MLF	40-pin PDIP 44-pin PLCC 44-pin TQFP

TABLE 1-1:PIC16CR7X DEVICE FEATURES

TABLE 1-2:PIC16CR73 AND PIC16CR76 PINOUT DESCRIPTION

Pin Name	PDIP SSOP SOIC Pin#	MLF Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN OSC1	9	6	Ι	ST/CMOS ⁽³⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS.
CLKIN			Ι		External clock source input. Always associated with pin function OSC1 (see OSC1/CLKIN, OSC2/CLKOUT pins).
OSC2/CLKOUT OSC2	10	7	Ο	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKOUT			0		In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR	1	26	I	ST	Master Clear (Reset) input. This pin is an active low Reset to the device.
					PORTA is a bidirectional I/O port.
RA0/AN0	2	27		TTL	
RA0			I/O		Digital I/O.
AN0			I		Analog input 0.
RA1/AN1	3	28		TTL	
RA1			I/O		Digital I/O.
AN1			I		Analog input 1.
RA2/AN2	4	1	1/0	TTL	
RA2 AN2			I/O		Digital I/O. Analog input 2.
RA3/AN3/VREF	5	2	1	TTL	Analog input 2.
RA3/AN3/VREF	5	2	I/O	116	Digital I/O.
AN3			1/0		Analog input 3.
VREF			Ì		A/D reference voltage input.
RA4/T0CKI	6	3		ST	
RA4			I/O		Digital I/O – Open drain when configured as output.
TOCKI			I		Timer0 external clock input.
RA5/AN4/SS	7	4		TTL	
RA5			I/O		Digital I/O.
AN4 SS					Analog input 4.
55			1		SPI slave select input.
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	18		TTL/ST ⁽¹⁾	
RB0			I/O		Digital I/O.
INT			I		External interrupt.
RB1	22	19	I/O	TTL	Digital I/O.
RB2	23	20	I/O	TTL	Digital I/O.
RB3	24	21	I/O	TTL	Digital I/O.
RB4	25	22	I/O	TTL	Digital I/O.
RB5	26	23	I/O	TTL	Digital I/O.
RB6	27	24	I/O	TTL	Digital I/O.
RB7	28	25	I/O	TTL	Digital I/O.
		D = output		/O = input/output/	

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Verify mode.

Pin Name	PDIP SSOP SOIC Pin#	MLF Pin#	I/O/P Type	Buffer Type	Description
					PORTC is a bidirectional I/O port.
RC0/T1OSO/T1CKI	11	8		ST	
RC0			I/O		Digital I/O.
T1OSO			0		Timer1 oscillator output.
T1CKI			I		Timer1 external clock input.
RC1/T1OSI/CCP2	12	9		ST	
RC1		_	I/O	_	Digital I/O.
T1OSI			1		Timer1 oscillator input.
CCP2			I/O		Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1	13	10		ST	
RC2			I/O		Digital I/O.
CCP1			I/O		Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	14	11	., -	ST	
RC3	17		I/O	01	Digital I/O.
SCK			1/O		Synchronous serial clock input/output for SPI mode.
SCL			I/O		Synchronous serial clock input/output for l^2C^{TM} mode.
RC4/SDI/SDA	15	12	., e	ST	
RC4	15	12	I/O	51	Digital I/O.
SDI			1/0		SPI data in.
SDA			1/O		l ² C [™] data I/O.
RC5/SDO	16	13	1/0	ST	
RC5	10	15	I/O	51	Digital I/O.
SDO			0		SPI data out.
RC6/TX/CK	17	14	0	ST	
RC6	17	14	I/O	51	Digital I/O.
TX			0		USART asynchronous transmit.
CK			I/O		USART 1 synchronous clock.
RC7/RX/DT	18	15	1/0	ST	
RC7/RX/D1 RC7	δI	15	I/O	51	Digital I/O
RX			1/0		Digital I/O. USART asynchronous receive.
DT			I/O		USART synchronous data.
Vss	8, 19	5, 16	P		Ground reference for logic and I/O pins.
VDD	20	17	P		Positive supply for logic and I/O pins.
Legend: I = input		D = output		O = input/outp	

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Verify mode.

TABLE 1-3: PIC16CR74 AND PIC16CR77 PINOUT DESCRIPTION

	Pin#	PLCC Pin#	QFP Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN OSC1	13	14	30	I	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input.
CLKIN				I		ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin function OSC1 (see OSC1/CLKIN, OSC2/CLKOUT pins).
OSC2/CLKOUT OSC2	14	15	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKOUT				0		In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR	1	2	18	I	ST	Master Clear (Reset) input. This pin is an active low Reset to the device.
						PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	3	19	I/O I	TTL	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	4	20	I/O I	TTL	Digital I/O. Analog input 1.
RA2/AN2 RA2 AN2	4	5	21	I/O I	TTL	Digital I/O. Analog input 2.
RA3/AN3/VREF RA3 AN3 VREF	5	6	22	I/O I I	TTL	Digital I/O. Analog input 3. A/D reference voltage input.
RA4/T0CKI RA4 T0CKI	6	7	23	I/O I	ST	Digital I/O – Open drain when configured as output. Timer0 external clock input.
RA5/AN4/SS RA5 <u>AN4</u> SS Legend: I = input	7	8 O = outr	24	I/O I I	TTL put/output	Digital I/O. Analog input 4. SPI slave select input. P = power

- = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Verify mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

Pin Name	PDIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTB is a bidirectional I/O port. PORTB can be software
						programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	
RB0 INT				1/0		Digital I/O. External interrupt.
RB1	34	37	9	I/O	TTL	Digital I/O.
RB2	35	38	10	I/O	TTL	Digital I/O.
RB3	36	39	11	I/O	TTL	Digital I/O.
RB4	37	41	14	I/O	TTL	Digital I/O.
RB5	38	42	15	I/O	TTL	Digital I/O.
RB6	39	43	16	I/O	TTL	Digital I/O.
RB7	40	44	17	I/O	TTL	Digital I/O.
	-10		17	., 0	112	PORTC is a bidirectional I/O port.
RC0/T1OSO/	15	16	32		ST	
T1CKI	15	10	02	I/O	01	Digital I/O.
RC0				0		Timer1 oscillator output.
T1OSO				I		Timer1 external clock input.
T1CKI						
RC1/T1OSI/CCP2	16	18	35		ST	
RC1				I/O		Digital I/O.
T1OSI				I		Timer1 oscillator input.
CCP2				I/O		Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1	17	19	36		ST	
RC2 CCP1				I/O I/O		Digital I/O.
	10	00	07	1/0	OT	Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL RC3	18	20	37	I/O	ST	Digital I/O.
SCK				1/O		Synchronous serial clock input/output for SPI mode.
SCL				I/O		Synchronous serial clock input/output for I^2C^{TM} mode.
RC4/SDI/SDA	23	25	42		ST	-,
RC4				I/O		Digital I/O.
SDI				1		SPI data in.
SDA				I/O		I ² C™ data I/O.
RC5/SDO	24	26	43		ST	
RC5				I/O		Digital I/O.
SDO				0		SPI data out.
RC6/TX/CK	25	27	44		ST	
RC6				I/O		Digital I/O.
TX				0		USART asynchronous transmit.
CK	00	00	_	I/O	OT	USART 1 synchronous clock.
RC7/RX/DT RC7	26	29	1	1/0	ST	Digital I/O.
RC7 RX				1/O 1		USART asynchronous receive.
DT				I/O		USART synchronous data.
	t	O = out			out/output	P = power

TABLE 1-3: PIC16CR74 AND PIC16CR77 PINOUT DESCRIPTION (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Verify mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

Pin Name	PDIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTD is a bidirectional I/O port or parallel slave port
						when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38		ST/TTL ⁽³⁾	
RD0				I/O		Digital I/O.
PSP0				I/O		Parallel Slave Port data.
RD1/PSP1	20	22	39	I	ST/TTL ⁽³⁾	
RD1				I/O		Digital I/O.
PSP1				I/O	(2)	Parallel Slave Port data.
RD2/PSP2	21	23	40	I	ST/TTL ⁽³⁾	
RD2				I/O		Digital I/O.
PSP2				I/O	o -	Parallel Slave Port data.
RD3/PSP3	22	24	41		ST/TTL ⁽³⁾	
RD3 PSP3				I/O I/O		Digital I/O. Parallel Slave Port data.
	07	20	0	1/0	ST/TTL ⁽³⁾	Falallel Slave Foll Gala.
RD4/PSP4 RD4	27	30	2	I/O	51/1120	Digital I/O.
PSP4				1/O		Parallel Slave Port data.
RD5/PSP5	28	31	3	1/0	ST/TTL ⁽³⁾	i arailer blave i bit data.
RD5	20	31	3	I/O	31/11L*/	Digital I/O.
PSP5				1/O		Parallel Slave Port data.
RD6/PSP6	29	32	4		ST/TTL ⁽³⁾	
RD6	20	02	-	I/O	OI/IIL	Digital I/O.
PSP6				I/O		Parallel Slave Port data.
RD7/PSP7	30	33	5		ST/TTL ⁽³⁾	
RD7			-	I/O		Digital I/O.
PSP7				I/O		Parallel Slave Port data.
						PORTE is a bidirectional I/O port.
RE0/AN5/RD/	8	9	25		ST/TTL ⁽³⁾	
RE0				I/O		Digital I/O.
AN5				I		Analog input 5.
RD				I		Read control for parallel slave port .
RE1/AN6/WR/	9	10	26		ST/TTL ⁽³⁾	
RE1				I/O		Digital I/O.
AN6				1		Analog input 6.
WR				Ι	(2)	Write control for parallel slave port .
RE2/AN7/CS	10	11	27	1/0	ST/TTL ⁽³⁾	
RE2				I/O		Digital I/O.
AN7 CS						Analog input 7. Chip Select control for parallel slave port.
Vss	12,31	13,34	6,29	P		Ground reference for logic and I/O pins.
					_	° 1
VDD	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC	—	1,17, 28, 40 O = out	12,13, 33, 34		—	These pins are not internally connected. These pins should be left unconnected.

TABLE 1-3: PIC16CR74 AND PIC16CR77 PINOUT DESCRIPTION (CONTINUED)

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Verify mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PIC[®] MCUs. The Program Memory and Data Memory have separate buses so that concurrent access can occur and is detailed in this section. The Program Memory can be read internally by user code (see Section 3.0 "Reading Program Memory").

Additional information on device memory may be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

2.1 Program Memory Organization

The PIC16CR7X devices have a 13-bit program counter capable of addressing an 8K word x 14-bit program memory space. The PIC16CR77/76 devices have 8K words of ROM program memory and the PIC16CR73/74 devices have 4K words. The program memory maps for PIC16CR7X devices are shown in Figure 2-1. Accessing a location above the physically implemented address will cause a wraparound.

The Reset vector is at 0000h and the interrupt vector is at 0004h.

© 2007 Microchip Technology Inc.

2.2 Data Memory Organization

The Data Memory is partitioned into multiple banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits:

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file (shown in Figure 2-2 and Figure 2-3) can be accessed either directly, or indirectly, through the File Select Register (FSR).

PROGRAM MEMORY MAPS AND STACKS FOR PIC16CR7X DEVICES FIGURE 2-1: PIC16CR76/77 PIC16CR73/74 PC<12:0> PC<12:0> 13 13 CALL, RETURN CALL, RETURN RETETE. RETLW RETFIE, RETLW Stack Level 1 Stack Level 1 Stack Level 2 Stack Level 2 Stack Level 8 Stack Level 8 Reset Vector 0000h 0000h Reset Vector Interrupt Vector Interrupt Vector 0004h 0005h 0004h 0005h Page 0 Page 0 On-Chip 07FFh 07FFh Program 0800h 0800h Memory Page 1 Page 1 On-Chip 0FFFh 0FFFh Program 1000h 1000h Memory Page 2 Unimplemented 17FFh Read as '0' 1800h Page 3 1FFFh 1FFFh

FIGURE 2-2: PIC16CR77/76 REGISTER FILE MAP

A	File Address	A	File Address	,	File Address		File Addres
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	18Cł
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh		18Dł
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eł
TMR1H	0Fh		8Fh	PMADRH	10Fh		18Fh
T1CON	10h		90h		110h		190h
TMR2	11h		91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h		116h	Ormanal	196h
CCP1CON	17h		97h	General Purpose	117h	General Purpose	197h
RCSTA	18h	TXSTA	98h	Register	118h	Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ał
CCPR2L	1Bh		9Bh		11Bh		19Bł
CCPR2H	1Ch		9Ch		11Ch		19Cł
CCP2CON	1Dh		9Dh		11Dh		19Dł
ADRES	1Eh		9Eh		11Eh		19Eł
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EFt
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h-7Fh	1F0h 1FFh
Bank 0		Bank 1	1111	Bank 2	.,	Bank 3	

Unimplemented data memory locations, read as '0'.

* Not a physical register.

Note 1: These registers are not implemented on 28-pin devices.

FIGU	IRE	2-3:

PIC16CR74/73 REGISTER FILE MAP

	Address		File Address		File Address	Ļ	File Addres
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ał
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bł
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	18CI
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh		18DI
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eł
TMR1H	0Fh		8Fh	PMADRH	10Fh		18Fł
T1CON	10h		90h		110h		190h
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
CCPR2L	1Bh		9Bh				
CCPR2H	1Ch		9Ch				
CCP2CON	1Dh		9Dh				
ADRES	1Eh		9Eh				
ADCON0	1Fh	ADCON1	9Fh		120h		1A0ł
	20h		A0h		12011		.,
General		General					
Purpose Register		Purpose Register		accesses		accesses	
96 Bytes		_		20h-7Fh		A0h-FFh	1EFł
30 Dyles		96 Bytes			16Fh 170h		1F0ł
	7Fh		FFh		17Fh		1FFł
Bank 0	J / E 11	Bank 1		Bank 2	17111	Bank 3	
* Not a phy	sical registe	memory location er. e not implemented					

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
Bank 0											
00h ⁽⁴⁾	INDF	Addressing	g this locatio	n uses conte	ents of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96
01h	TMR0	Timer0 Mc	dule Registe	er						xxxx xxxx	45, 96
02h ⁽⁴⁾	PCL	Program C	Program Counter (PC) Least Significant Byte							0000 0000	26, 96
03h ⁽⁴⁾	STATUS	IRP	IRP RP1 RP0 TO PD Z DC C ⁽²⁾							0001 1xxx	19, 96
04h ⁽⁴⁾	FSR	Indirect Da	Indirect Data Memory Address Pointer								27, 96
05h	PORTA	_		PORTA Dat	a Latch when	written: POF	RTA pins wh	en read		0x 0000	32, 96
06h	PORTB	PORTB D	ata Latch wh	en written: P	ORTB pins w	hen read				xxxx xxxx	34, 96
07h	PORTC	PORTC D	ata Latch wh	ien written: F	ORTC pins w	vhen read				xxxx xxxx	35, 96
08h ⁽⁵⁾	PORTD	PORTD D	ata Latch wh	en written: F	ORTD pins w	hen read				xxxx xxxx	36, 96
09h ⁽⁵⁾	PORTE	_			_		RE2	RE1	RE0	xxx	39, 96
0Ah ^(1,4)	PCLATH	_	— — Write Buffer for the upper 5 bits of the Program Counter						0 0000	26, 96	
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	23, 96
0Dh	PIR2	_	_	_	_	_	_	_	CCP2IF	0	24, 96
0Eh	TMR1L	Holding Re	egister for the	e Least Sign	ificant Byte of	the 16-bit TM	VR1 Registe	er		xxxx xxxx	50, 96
0Fh	TMR1H	Holding Re	egister for the	e Most Signi	ficant Byte of	the 16-bit TM	IR1 Registe	r		xxxx xxxx	50, 96
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	47, 96
11h	TMR2	Timer2 Mc	dule Registe	er	r		T	r		0000 0000	52, 96
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	52, 96
13h	SSPBUF	Synchrono	ous Serial Po	rt Receive B	uffer/Transmi	t Register	•	i	i	xxxx xxxx	64, 68, 96
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	61,96
15h	CCPR1L	Capture/C	ompare/PWI	M Register 1	(LSB)					XXXX XXXX	56, 96
16h	CCPR1H	Capture/C	ompare/PWI	M Register 1	(MSB)		-		1	xxxx xxxx	56, 96
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	54, 96
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	70, 96
19h	TXREG	USART Tr	ansmit Data	Register						0000 0000	75, 96
1Ah	RCREG	USART Re	eceive Data	Register						0000 0000	77, 96
1Bh	CCPR2L	Capture/C	ompare/PWI	M Register 2	(LSB)					xxxx xxxx	58, 96
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register 2	(MSB)	1	1		1	xxxx xxxx	58, 96
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	54, 96
1Eh	ADRES	A/D Resul	t Register By	/te	1	1	1		1	xxxx xxxx	88, 96
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	83, 96

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non Power-up) Resets include external Reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

IABLE	2-1. 36				TER SUM						1
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
Bank 1											
80h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address dat	a memory (r	not a physica	al register)	0000 0000	27, 96
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	20, 44, 96
82h ⁽⁴⁾	PCL	Program Counter (PC) Least Significant Byte								0000 0000	26, 96
83h ⁽⁴⁾	STATUS	IRP RP1 RP0 TO PD Z DC C ⁽²⁾						C ⁽²⁾	0001 1xxx	19, 96	
84h ⁽⁴⁾	FSR	Indirect da	Indirect data memory address pointer							xxxx xxxx	27, 96
85h	TRISA	_	_	-	a Direction Re	egister				11 1111	32, 96
86h	TRISB	PORTB D	ata Direction	Register						1111 1111	34, 96
87h	TRISC	PORTC D	ata Direction	Register						1111 1111	35, 96
88h ⁽⁵⁾	TRISD	PORTD Data Direction Register							1111 1111	36, 96	
89h ⁽⁵⁾	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ata Direction	Bits	0000 -111	38, 96
8Ah ^(1,4)	PCLATH	_	_	_	Write Buffer f	for the upper	5 bits of the	Program C	0 0000	26, 96	
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	22, 97
8Dh	PIE2						_		CCP2IE	0	24, 97
8Eh	PCON	_			_		_	POR	BOR	dd	22, 97
8Fh	_	Unimplem	ented							_	_
90h	_	Unimplem	ented							—	—
91h	_	Unimplem	ented							_	_
92h	PR2	Timer2 Mo	odule Period	Register						1111 1111	52, 97
93h	SSPADD	Synchrono	ous Serial Po	ort (l ² C™ mo	de) Address F	Register				0000 0000	68, 97
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	60, 97
95h	—	Unimplem	ented							—	_
96h	—	Unimplem	ented							_	_
97h	—	Unimplem	ented							_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	69, 97
99h	SPBRG	Baud Rate	e Generator I	Register						0000 0000	71, 97
9Ah	_	Unimplem	ented							_	
9Bh		Unimplem	ented							_	
9Ch	—	Unimplem	ented							—	
9Dh		Unimplem	ented							_	
9Eh	—	Unimplem	ented					-		—	
9Fh	ADCON1	—	—	—	—	—	PCFG2	PCFG1	PCFG0	000	84, 97

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED))
------------	-----------------------------------	-------------	---

Legend: x = unknown, u = unchanged, q = value depends on condition, -= unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non Power-up) Resets include external Reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
-------------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
Bank 2											
100h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96
101h	TMR0	Timer0 Mo	dule Registe	er						xxxx xxxx	45, 96
102h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96
103h ⁽⁴⁾	STATUS	IRP	RP1	1 RP0 TO PD Z DC C						0001 1xxx	19, 96
104h ⁽⁴⁾	FSR	Indirect Da	ndirect Data Memory Address Pointer							xxxx xxxx	27, 96
105h	—	Unimplem	ented							_	_
106h	PORTB	PORTB D	ata Latch wh	en written: F	ORTB pins w	hen read				xxxx xxxx	34, 96
107h	—	Unimplem	ented							_	_
108h	—	Unimplem	ented							_	_
109h	—	Unimplem	ented							_	_
10Ah ^(1,4)	PCLATH	—	_	_	— Write Buffer for the upper 5 bits of the Program Counter -					0 0000	26, 96
10Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
10Ch	PMDATA	Data Register Low Byte								xxxx xxxx	29, 97
10Dh	PMADR	Address Register Low Byte							xxxx xxxx	29, 97	
10Eh	PMDATH	— — Data Register High Byte						xxxx xxxx	29, 97		
10Fh	PMADRH	—	—	—	Address Reg	gister High By	/te			XXXX XXXX	29, 97
Bank 3											
180h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96
181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	20, 44, 96
182h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19, 96
184h ⁽⁴⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter		•			xxxx xxxx	27, 96
185h	_	Unimplem	ented							_	—
186h	TRISB	PORTB D	ata Direction	Register						1111 1111	34, 96
187h	_	Unimplem	ented							_	—
188h	—	Unimplemented							_	_	
189h	—	Unimplemented							_	_	
18Ah ^(1,4)	PCLATH	_	_	_	Write Buffer	for the upper	5 bits of the	Program Co	ounter	0 0000	26, 96
18Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
18Ch	PMCON1	(6)	—	—	—	—	—	—	RD	1 0	29, 97
18Dh	—	Unimplem	ented							_	
18Eh	—		maintain clea	ar						0000 0000	
18Fh	_	Reserved	maintain clea	ar						0000 0000	

Legend: x = unknown, u = unchanged, q = value depends on condition, -= unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non Power-up) Resets include external Reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as `000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any Status bits, see the "Instruction Set Summary."

Note 1: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
oit 7		I					bit
Legend:							
R = Reada	able bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 7	IRP. Begister	⁻ Bank Select bit	used for in	direct addressi	na)		
	•	(100h-1FFh)			ig)		
	0 = Bank 0, 1	· ,					
bit 6-5	RP1:RP0 : Re	gister Bank Sel	ect bits (use	d for direct add	ressing)		
	11 = Bank 3		·		•		
	10 = Bank 2						
	01 = Bank 1	• • •					
	00 = Bank 0 Each bank is						
bit 4	TO: Time-out	•					
		er-up, CLRWDT i me-out occurred		r SLEEP i nstruc	tion		
bit 3	PD : Power-do		-				
		er-up or by the	CLRWDT inst	ruction			
		tion of the SLEE					
bit 2	z: Zero bit						
		t of an arithmeti					
		t of an arithmeti	0 1				
bit 1	•	ry/borrow bit (AD				ıs)	
	•	ut from the 4th l			curred		
L:1 0	-	out from the 4th			·		
bit 0		ow bit (ADDWF,					
		ut from the Most out from the Mo					
Note:	For borrow, the p second operand. I of the source regis	For rotate (RRF,					

REGISTER 2-1: STATUS: (ADDRESS 03h, 83h, 103h, 183h)

2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG: (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RBPU: PORTB Pull-up Enable bit
	1 = PORTB pull-ups are disabled
	0 = PORTB pull-ups are enabled by individual PORT latch values
bit 6	INTEDG: Interrupt Edge Select bit
	 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin
bit 5	TOCS: TMR0 Clock Source Select bit
	1 = Transition on RA4/T0CKI pin
	0 = Internal instruction cycle clock (CLKOUT)
bit 4	T0SE: TMR0 Source Edge Select bit
	1 = Increment on high-to-low transition on RA4/T0CKI pin
	0 = Increment on low-to-high transition on RA4/T0CKI pin
bit 3	PSA: Prescaler Assignment bit
	1 = Prescaler is assigned to the WDT
	0 = Prescaler is assigned to the Timer0 module
bit 2-0	PS2:PS0: Prescaler Rate Select bits
	Bit Value TMR0 Rate WDT Rate

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1 : 128

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts. Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts
	0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit
	1 = Enables all unmasked peripheral interrupts0 = Disables all peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 interrupt0 = Disables the TMR0 interrupt
bit 4	INTE: RB0/INT External Interrupt Enable bit
	 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt
bit 3	RBIE : RB Port Change Interrupt Enable bit
DII 3	1 = Enables the RB port change interrupt
	0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = TMR0 register has overflowed (must be cleared in software)0 = TMR0 register did not overflow
bit 1	INTF: RB0/INT External Interrupt Flag bit
	 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur
bit 0	RBIF : RB Port Change Interrupt Flag bit A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
	0 = None of the RB7:RB4 pins have changed state

2.2.2.4 PIE1 Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: (ADDRESS 8Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0

Legend:			
R = Readable b	it W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at PC	OR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
	PSPIE ⁽¹⁾ : Parallel Slave Port Read/V	•	
	 1 = Enables the PSP read/write inter 0 = Disables the PSP read/write inter 	•	
bit 6	ADIE: A/D Converter Interrupt Enable	e bit	
	1 = Enables the A/D converter interru		
	0 = Disables the A/D converter interr	upt	
	RCIE: USART Receive Interrupt Ena		
	1 = Enables the USART receive inter		
	0 = Disables the USART receive inte	•	
	TXIE: USART Transmit Interrupt Ena		
	 = Enables the USART transmit inte 0 = Disables the USART transmit inte 	•	
	SSPIE: Synchronous Serial Port Inte	•	
	1 = Enables the SSP interrupt		
	0 = Disables the SSP interrupt		
	CCP1IE : CCP1 Interrupt Enable bit		
	 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt 		
	TMR2IE: TMR2 to PR2 Match Interru	upt Enable bit	
	1 = Enables the TMR2 to PR2 match	•	
	0 = Disables the TMR2 to PR2 match	•	
bit 0	TMR1IE: TMR1 Overflow Interrupt E	nable bit	
	1 = Enables the TMR1 overflow inter	•	
	0 = Disables the TMR1 overflow inte	rrupt	

Note 1: PSPIE is reserved on 28-pin devices; always maintain this bit clear.

2.2.2.5 PIR1 Register

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>). User soft-
	ware should ensure the appropriate interrupt
	bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

bit W = Writable bit POR '1' = Bit is set PSPIF ⁽¹⁾ : Parallel Slave Port Read/Wri 1 = A read or a write operation has tak 0 = No read or write has occurred ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion is completed (m 0 = The A/D conversion is not complet RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full 0 = The USART receive buffer is empt TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empt 0 = The USART transmit buffer is full	ken place (must be cleared in softwar must be cleared in software) te bit ty bit	x = Bit is unknown
 PSPIF⁽¹⁾: Parallel Slave Port Read/Writ 1 = A read or a write operation has tak 0 = No read or write has occurred ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion is completed (m 0 = The A/D conversion is not complete RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full 0 = The USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empt 	rite Interrupt Flag bit ken place (must be cleared in softwar must be cleared in software) te bit ty bit	
 1 = A read or a write operation has tak 0 = No read or write has occurred ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion is completed (m 0 = The A/D conversion is not complete RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full 0 = The USART receive buffer is empt TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empt 	ken place (must be cleared in softwar must be cleared in software) te bit ty bit	re)
 1 = An A/D conversion is completed (n 0 = The A/D conversion is not complete RCIF: USART Receive Interrupt Flag b 1 = The USART receive buffer is full 0 = The USART receive buffer is empt TXIF: USART Transmit Interrupt Flag b 1 = The USART transmit buffer is empt 	must be cleared in software) te bit ty bit	
 1 = The USART receive buffer is full 0 = The USART receive buffer is empt TXIF: USART Transmit Interrupt Flag b 1 = The USART transmit buffer is empt 	ty bit	
1 = The USART transmit buffer is emp		
	лу	
SPI A transmission/reception has take <u>I²C Slave</u> A transmission/reception has take <u>I²C Master</u> A transmission/reception has take The initiated Start condition was c The initiated Stop condition was c The initiated Restart condition wa The initiated Acknowledge conditi A Start condition occurred while th A Stop condition occurred while th	occurred, and must be cleared in soft ce Routine. The conditions that will so en place. en place. completed by the SSP module. completed by the SSP module. as completed by the SSP module. tion was completed by the SSP modul he SSP module was Idle (multi-maste he SSP module was Idle (multi-maste	et this bit are: Ile. er system).
0 = No TMR1 register capture occurred <u>Compare mode:</u> 1 = A TMR1 register compare match o	d occurred (must be cleared in software	3)
	5	
	The initiated Start condition was of The initiated Stop condition was of The initiated Restart condition was The initiated Restart condition was The initiated Acknowledge condit A Start condition occurred while t A Stop condition occurred while t 0 = No SSP interrupt condition has of CCP1IF : CCP1 Interrupt Flag bit <u>Capture mode</u> : 1 = A TMR1 register capture occurred 0 = No TMR1 register capture occurred <u>Compare mode</u> : 1 = A TMR1 register compare match of 0 = No TMR1 register compare match of 0 = No TMR1 register compare match of <u>PWM mode</u> : Unused in this mode TMR2IF : TMR2 to PR2 Match Interrup 1 = TMR2 to PR2 match occurred (mu 0 = No TMR2 to PR2 match occurred TMR1IF : TMR1 Overflow Interrupt Fla 1 = TMR1 register overflowed (must b 0 = TMR1 register did not overflow	Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software)