

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PIC12F510/16F506 Data Sheet

8/14-Pin, 8-Bit Flash Microcontrollers

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

8/14-Pin, 8-Bit Flash Microcontroller

Devices Included In This Data Sheet:

- PIC16F506
- PIC12F510

High-Performance RISC CPU:

- · Only 33 Single-Word Instructions to Learn
- All Single-Cycle Instructions except for Program Branches, which are Two-Cycle
- · 12-Bit Wide Instructions
- · Two-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes for Data and Instructions
- · 8-Bit Wide Data Path
- 10 Special Function Hardware Registers (PIC12F510)
- 13 Special Function Hardware Registers (PIC16F506)
- · Operating Speed:
 - DC 8 MHz Crystal Oscillator (PIC12F510)
 - DC 500 ns instruction cycle (PIC12F510)
 - DC 20 MHz Crystal Oscillator (PIC16F506)
 - DC 200 ns instruction cycle (PIC16F506)

Special Microcontroller Features:

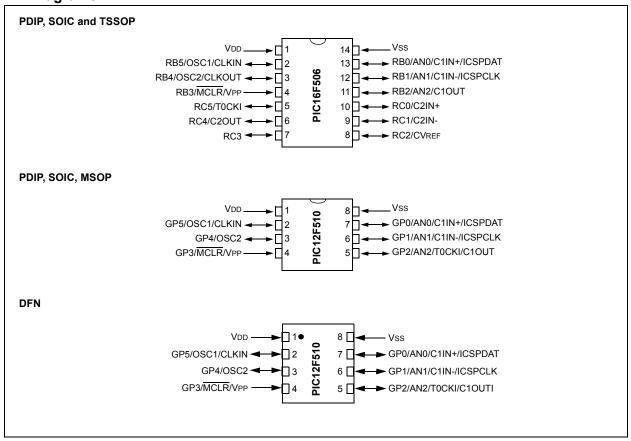
- 4 or 8 MHz Selectable Precision Internal Oscillator:
 - Factory calibrated to ±1%
- In-Circuit Serial Programming™ (ICSP™)
- · In-Circuit Debugging (ICD) Support
- · Power-on Reset (POR)
- · Device Reset Timer (DRT):
 - Short DRT (1.125 ms, typical) for INTOSC, EXTRC and EC
 - DRT (18 ms, typical) for HS, XT and LP
- Watchdog Timer (WDT) with Dedicated On-Chip RC Oscillator for Reliable Operation
- · Programmable Code Protection
- Multiplexed MCLR Input Pin
- · Selectable Internal Weak Pull-Ups on I/O Pins
- · Power-Saving Sleep mode
- · Wake-up from Sleep on Pin Change
- · Wake-up from Sleep on Comparator Change

- · Selectable Oscillator Options:
 - INTOSC: 4/8 MHz precision Internal oscillator
 - EXTRC: External low-cost RC oscillator
 - XT: Standard crystal/resonator
 - LP: Power-saving, low-frequency crystal
 - HS: High-speed crystal/resonator (PIC16F506 only)
 - EC: High-speed external clock input (PIC16F506 only)
- Analog-to-Digital (A/D) Converter:
 - 8-bit resolution
 - 4-input channels (1 channel is dedicated to conversion of the internal 0.6V absolute voltage reference)
- · High Current Sink/Source for Direct LED Drive
- 8-Bit Real-Time Clock/Counter (TMR0) with 8-Bit Programmable Prescaler

Low-Power Features/CMOS Technology:

- · Operating Current:
 - < 175 μA @ 2V, 4 MHz, typical
- · Standby Current:
 - 100 nA @ 2V, typical
- · Low-Power, High-Speed Flash Technology:
 - 100,000 cycle Flash endurance
 - > 40-year retention
- · Fully Static Design
- Wide Operating Voltage Range: 2.0V to 5.5V
- · Wide Temperature Range:
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +125°C

Peripheral Features (PIC12F510):


- 6 I/O Pins:
 - 5 I/O pins with individual direction control
 - 1 input only pin
- 1 Analog Comparator with Absolute Reference

Peripheral Features (PIC16F506):

- 12 I/O Pins:
 - 11 I/O pins with individual direction control
 - 1 input only pin
- 2 Analog Comparators with Absolute Reference and Programmable Reference

Device	Program Memory	Data Memory	I/O	Timers	
Device	Flash (words) SRAM (bytes)		1/0	8-bit	
PIC16F506	1024	67	12	1	
PIC12F510	1024	38	6	1	

Pin Diagrams

Table of Contents

1.0	General Description	
2.0	PIC12F510/16F506 Device Varieties	7
3.0	PIC12F510/16F506 Device Varieties	9
4.0	Memory Organization	. 15
5.0	I/O Port.	27
6.0	TMR0 Module and TMR0 Register	. 39
7.0	Comparator(s)	43
8.0	Comparator Voltage Reference Module (PIC16F506 only)	49
9.0	Analog-to-Digital (A/D) Converter	. 51
10.0		55
	Instruction Set Summary	
12.0		
13.0	Electrical Characteristics	83
14.0	DC and AC Characteristics Graphs and Charts	97
15.0	Packaging	105
	11	
	Aicrochip Web Site1	
Custo	omer Change Notification Service	119
Custo	omer Support	119
Read	er Response	120
	uct Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

 $\label{lem:register} \textit{Register on our web site at } \textbf{www.microchip.com} \ \textit{to receive the most current information on all of our products}.$

NOTES:

1.0 GENERAL DESCRIPTION

The PIC12F510/16F506 devices from Microchip Technology are low-cost, high-performance, 8-bit, fully-static, Flash-based CMOS microcontrollers. They employ a RISC architecture with only 33 single-word/single-cycle instructions. All instructions are single-cycle except for program branches, which take two cycles. The PIC12F510/16F506 devices deliver performance in an order of magnitude higher than their competitors in the same price category. The 12-bit wide instructions are highly symmetrical, resulting in a typical 2:1 code compression over other 8-bit microcontrollers in its class. The easy-to-use and easy-to-remember instruction set reduces development time significantly.

The PIC12F510/16F506 products are equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external Reset circuitry. There are four oscillator configurations to choose from (six on the PIC16F506), including INTOSC Internal Oscillator mode and the Power-Saving LP (Low-power) Oscillator mode. Power-Saving Sleep mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC12F510/16F506 devices allow the customer to take full advantage of Microchip's price leadership in Flash programmable microcontrollers, while benefiting from the Flash programmable flexibility.

The PIC12F510/16F506 products are supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a 'C' compiler, a low-cost development programmer and a full featured programmer. All the tools are supported on IBM $^{\circledR}$ PC and compatible machines.

1.1 Applications

The PIC12F510/16F506 devices fit in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. The Flash technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make these microcontrollers perfect for applications with space limitations. Low-cost, low-power, high-performance, ease-of-use and I/O flexibility make the PIC12F510/16F506 devices very versatile, even in areas where no microcontroller use has been considered before (e.g., timer functions, logic and PLDs in larger systems and coprocessor applications).

TABLE 1-1: PIC12F510/16F506 DEVICES

		PIC16F506	PIC12F510
Clock	Maximum Frequency of Operation (MHz)	20	8
Memory	Flash Program Memory (words)	1024	1024
	Data Memory (bytes)	67	38
Peripherals	Timer Module(s)	TMR0	TMR0
	Wake-up from Sleep on Pin Change	Yes	Yes
Features	I/O Pins	11	5
	Input Only Pin	1	1
	Internal Pull-ups	Yes	Yes
	In-Circuit Serial Programming	Yes	Yes
	Number of Instructions	33	33
	Packages	14-pin PDIP, SOIC, TSSOP	8-pin PDIP, SOIC, MSOP, DFN

The PIC12F510/16F506 devices have Power-on Reset, selectable Watchdog Timer, selectable code-protect, high I/O current capability and precision internal oscillator.

The PIC12F510/16F506 devices use serial programming with data pin RB0/GP0 and clock pin RB1/GP1.

NOTES:

2.0 PIC12F510/16F506 DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC12F510/16F506 Product Identification System at the back of this data sheet to specify the correct part number.

2.1 Quick Turn Programming (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. The devices are identical to the Flash devices, but with all Flash locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.2 Serialized Quick Turn ProgrammingSM (SQTPSM) Devices

Microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry code, password or ID number.

NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC12F510/16F506 devices can be attributed to a number of architectural features commonly found in RISC microprocessors. The PIC12F510/16F506 devices use a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architectures where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide, making it possible to have all single-word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (200 ns @ 20 MHz, 1 µs @ 4 MHz) except for program branches.

Table 3-1 lists program memory (Flash) and data memory (RAM) for the PIC12F510/16F506 devices.

TABLE 3-1: PIC12F510/16F506 MEMORY

Device	Men	nory
Device	Program	Data
PIC12F510	1024 x 12	38 x 8
PIC16F506	1024 x 12	67 x 8

The PIC12F510/16F506 devices can directly or indirectly address its register files and data memory. All Special Function Registers (SFRs), including the PC, are mapped in the data memory. The PIC12F510/16F506 devices have a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any addressing mode. This symmetrical nature and lack of "special optimal situations" make programming with the PIC12F510/16F506 devices simple, yet efficient. In addition, the learning curve is reduced significantly.

The PIC12F510/16F506 devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, one operand is typically the W (working) register. The other operand is either a file register or an immediate constant. In single-operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC) and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1 for PIC12F510 with the corresponding device pins described in Table 3-2. A simplified block diagram for PIC16F506 is shown in Figure 3-2 with the corresponding device pins described in Table 3-3.

10-11 GPIO Data Bus Program Counter Flash GP0/ICSPDAT 1K x 12 GP1/ICSPCLK GP2 RAM GP3 GP4 STACK 1 Program 38 bytes Memory STACK 2 Registers Program Bus 12 RAM Addr Addr MUX Instruction Reg Direct Addr Addr FSR Reg STATUS Reg 8 MUX Device Reset ₹ Timer Instruction C1IN+ Power-on Decode & Control Comparator C1IN-ALU Reset C10UT Watchdog 8 Timer Timing Generation W Reg OSC1/CLKIN< Internal RC CVREF OSC2 Clock AN0 Timer0 8-bit ADC AN1 VDD, VSS AN2 MCLR \boxtimes T0CKI

FIGURE 3-1: PIC12F510 SERIES BLOCK DIAGRAM

TABLE 3-2: PIN DESCRIPTIONS - PIC12F510

Name	I/O/P Type	Input Type	Output Type	Description
GP0/AN0/C1IN+/ICSPDAT	GP0	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	AN0	AN	_	ADC channel input.
	C1IN+	AN	_	Comparator input.
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming data pin.
GP1/AN1/C1IN-/ICSPCLK	GP1	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	AN1	AN	_	ADC channel input.
	C1IN-	AN	_	Comparator input.
	ICSPCLK	ST	_	In-Circuit Serial Programming clock pin.
GP2/AN2/T0CKI/C1OUT	GP2	TTL	CMOS	Bidirectional I/O port.
	AN2	AN	_	ADC channel input.
	T0CKI	ST	_	Timer0 clock input.
	C10UT	_	CMOS	Comparator output.
GP3/MCLR/VPP	GP3	TTL	_	Standard TTL input. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	MCLR	ST	_	MCLR input – weak pull-up always enabled in this mode.
	VPP	HV	_	Programming Voltage input.
GP4/OSC2	GP4	TTL	CMOS	Bidirectional I/O port.
	OSC2		XTAL	XTAL oscillator output pin.
GP5/OSC1/CLKIN	GP5	TTL	CMOS	Bidirectional I/O port.
	OSC1	XTAL		XTAL oscillator input pin.
	CLKIN	ST	_	EXTRC Schmitt Trigger input.
VDD	VDD	Р		Positive supply for logic and I/O pins.
Vss	Vss	Р		Ground reference for logic and I/O pins.

Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input, AN = Analog Voltage, HV = High Voltage

10 Data Bus **PORTB** Program Counter RB0/ICSPDAT Flash jţ RB1/ICSPCLK 1K x 12 RB2 Program RAM STACK 1 RB3 Memory 67 bytes STACK 2 RB4 File RB5 Registers Program Bus 10 1 9 RAM Addr **PORTC** Addr MUX Instruction Reg RC0 Indirect RC1 Direct Addr 5-7 Addr RC2 RC3 FSR Reg RC4 RC5 STATUS Reg 8 C1IN+ Comparator 1 C1IN-MUX C10UT Device Reset Timer 0.6V Reference Instruction Power-on Decode & Control C2IN+ ALU Reset C2IN-Comparator 2 Watchdog 8 C2OUT Timer Timing Generation OSC1/CLKIN OSC2/CLKOUT Internal RC W Reg CVREF Clock ► CVREF CVREF Timer0 X AN0 \boxtimes VDD, Vss MCLR 8-bit ADC AN1 X AN2 \boxtimes T0CKI

FIGURE 3-2: PIC16F506 SERIES BLOCK DIAGRAM

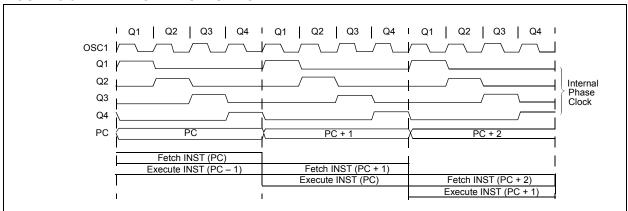
TABLE 3-3: PIN DESCRIPTIONS - PIC16F506

Name	Function	Input Type	Output Type	Description
RB0/AN0/C1IN+/ICSPDAT	RB0	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	AN0	AN	_	ADC channel input.
	C1IN+	AN	_	Comparator 1 input.
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming data pin.
RB1/AN1/C1IN-/ICSPCLK	RB1	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	AN1	AN	_	ADC channel input.
	C1IN-	AN	_	Comparator 1 input.
	ICSPCLK	ST	_	In-Circuit Serial Programming clock pin.
RB2/AN2/C1OUT	RB2	TTL	CMOS	Bidirectional I/O port.
	AN2	AN	_	ADC channel input.
	C1OUT	_	CMOS	Comparator 1 output.
RB3/MCLR/VPP	RB3	TTL	_	Standard TTL input. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	MCLR	ST	_	MCLR input – weak pull-up always enabled in this mode.
	VPP	HV	_	Programming voltage input.
RB4/OSC2/CLKOUT	RB4	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	OSC2	_	XTAL	XTAL oscillator output pin.
	CLKOUT	_	CMOS	EXTRC/INTOSC CLKOUT pin (Fosc/4).
RB5/OSC1/CLKIN	RB5	TTL	CMOS	Bidirectional I/O port.
	OSC1	XTAL	_	XTAL oscillator input pin.
	CLKIN	ST	_	EXTRC/EC Schmitt Trigger input.
RC0/C2IN+	RC0	TTL	CMOS	Bidirectional I/O port.
	C2IN+	AN	_	Comparator 2 input.
RC1/C2IN-	RC1	TTL	CMOS	Bidirectional I/O port.
	C2IN-	AN	_	Comparator 2 input.
RC2/CVREF	RC2	TTL	CMOS	Bidirectional I/O port.
	CVREF	_	AN	Programmable Voltage Reference output.
RC3	RC3	TTL	CMOS	Bidirectional I/O port.
RC4/C2OUT	RC4	TTL	CMOS	Bidirectional I/O port.
	C2OUT	_	CMOS	Comparator 2 output.
RC5/T0CKI	RC5	TTL	CMOS	Bidirectional I/O port.
	T0CKI	ST	_	Timer0 clock input.
VDD	VDD	Р	_	Positive supply for logic and I/O pins.
Vss	Vss	Р	_	Ground reference for logic and I/O pins.

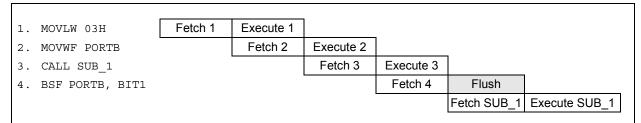
Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input, AN = Analog Voltage, HV = High Voltage

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the PC is incremented every Q1 and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-3 and Example 3-1.


3.2 Instruction Flow/Pipelining

An instruction cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the PC to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).

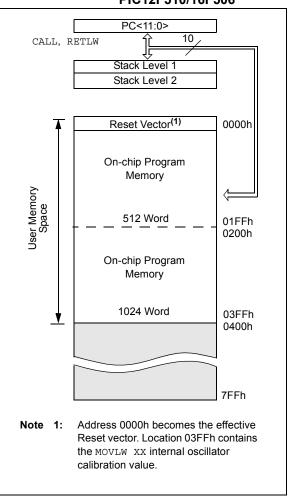

A fetch cycle begins with the PC incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

4.0 MEMORY ORGANIZATION


The PIC12F510/16F506 memories are organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using STATUS register bit PA0. For the PIC12F510 and PIC16F506, with data memory register files of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Select Register (FSR).

4.1 Program Memory Organization for the PIC12F510/16F506

The PIC12F510/16F506 devices have a 10-bit Program Counter (PC) capable of addressing a 2K x 12 program memory space.

Only the first 1K \times 12 (0000h-03FFh) are physically implemented (see Figure 4-1). Accessing a location above these boundaries will cause a wraparound within the 1K \times 12 space. The effective Reset vector is a 0000h (see Figure 4-1). Location 03FFh contains the internal clock oscillator calibration value. This value should never be overwritten.

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC12F510/16F506

4.2 Data Memory Organization

Data memory is composed of registers or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers (SFRs) and General Purpose Registers (GPRs).

The Special Function Registers include the TMR0 register, the Program Counter (PCL), the STATUS register, the I/O registers (ports) and the File Select Register (FSR). In addition, Special Function Registers are used to control the I/O port configuration and prescaler options.

The General Purpose Registers are used for data and control information under command of the instructions.

For the PIC12F510, the register file is composed of 10 Special Function Registers, 6 General Purpose Registers and 32 General Purpose Registers accessed by banking (see Figure 4-2).

For the PIC16F506, the register file is composed of 13 Special Function Registers, 3 General Purpose Registers and 64 General Purpose Registers, accessed by banking (see Figure 4-3).

4.2.1 GENERAL PURPOSE REGISTER FILE

The General Purpose Register file is accessed either directly or indirectly through the File Select Register (FSR). See **Section 4.8 "Indirect Data Addressing: INDF and FSR Registers"**.

FIGURE 4-2: PIC12F510 REGISTER FILE MAP

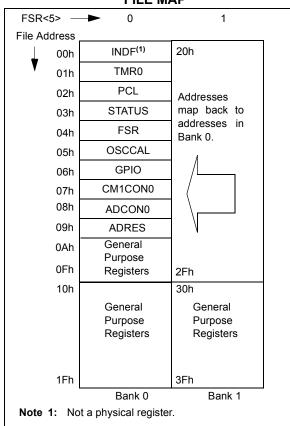
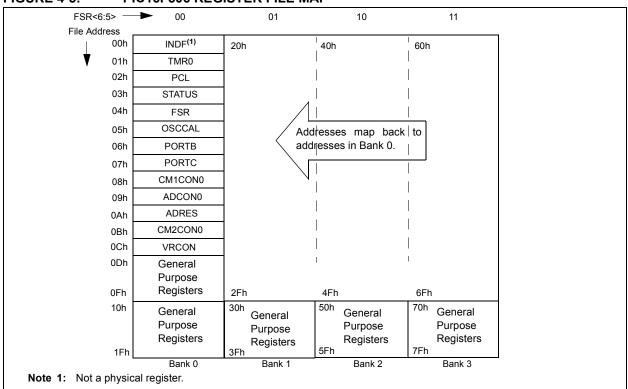



FIGURE 4-3: PIC16F506 REGISTER FILE MAP

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral functions to control the operation of the device (see Table 4-1).

The Special Function Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY - PIC12F510

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset		
N/A	TRIS	I/O Control	/O Control Registers (TRISGPIO)									
N/A	OPTION	Contains co	ntrol bits to co	onfigure Tim	ner0 and Time	er0/WDT P	rescaler			1111 1111		
00h	INDF	Uses conte	nts of FSR to	address da	ta memory (n	ot a physic	al register)			xxxx xxxx		
01h	TMR0	Timer0 Mod	lule Register							xxxx xxxx		
02h ⁽¹⁾	PCL	Low Order 8	3 bits of PC							1111 1111		
03h	STATUS	GPWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx		
04h	FSR	Indirect Dat	a Memory Ad	dress Point	er					110x xxxx		
05h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	1111 111-		
06h	GPIO	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx		
07h	CM1CON0	C1OUT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111		
08h	ADCON0	ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON	1111 1100		
09h	ADRES ADC Conversion Result								xxxx xxxx			

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused.
 Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.6 "Program Counter" for an explanation of how to access these bits.

TABLE 4-2: SPECIAL FUNCTION REGISTER SUMMARY – PIC16F506

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset
N/A	TRIS	I/O Control	Registers (TR	RISB, TRISC	;)					11 1111
N/A	OPTION	Contains co	ntrol bits to co	onfigure Tim	er0 and Time	r0/WDT Pre	scaler			1111 1111
00h	INDF	Uses conte	nts of FSR to	address dat	a memory (no	t a physical	register)			xxxx xxxx
01h	TMR0	Timer0 Mod	lule Register							xxxx xxxx
02h ⁽¹⁾	PCL	Low Order	8 bits of PC							1111 1111
03h	STATUS	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx
04h	FSR	Indirect Dat	a Memory Ad	dress Pointe	er					100x xxxx
05h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	1111 111-
06h	PORTB	_	_	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx
07h	PORTC	_	_	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx
08h	CM1CON0	C1OUT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111
09h	ADCON0	ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON	1111 1100
0Ah	ADRES	ADC Conve	ADC Conversion Result							
0Bh	CM2CON0	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	1111 1111
0Ch	VRCON	VREN	VROE	VRR	(2)	VR3	VR2	VR1	VR0	0011 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused.

4.3 STATUS Register

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bit.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF and MOVWF instructions be used to alter the STATUS register. These instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions which do affect Status bits, see **Section 11.0 "Instruction Set Summary"**.

Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.6 "Program Counter" for an explanation of how to access these bits.

^{2:} Unimplemented bit VRCON<4> read as '1'.

REGISTER 4-1: STATUS: STATUS REGISTER (PIC12F510)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
GPWUF	CWUF	PA0	TO	PD	Z	DC	С
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 GPWUF: GPIO Reset bit

1 = Reset due to wake-up from Sleep on pin change

0 = After power-up or other Reset

bit 6 **CWUF**: Comparator Reset bit

1 = Reset due to wake-up from Sleep on comparator change

0 = After power-up or other Reset

bit 5 PA0: Program Page Preselect bit

1 = Page 1 (200h-3FFh) 0 = Page 0 (000h-1FFh) Each page is 512 bytes.

Using the PA0 bit as a general purpose read/write bit in devices which do not use it for program page preselect is

not recommended, since this may affect upward compatibility with future products.

bit 4 **TO**: Time-Out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = A WDT time-out occurred

bit 3 **PD**: Power-Down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SLEEP instruction

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit Carry/Borrow bit (for ADDWF and SUBWF instructions)

ADDWF:

1 = A carry from the 4th low-order bit of the result occurred

0 = A carry from the 4th low-order bit of the result did not occur

SUBWF:

1 = A borrow from the 4th low-order bit of the result did not occur

0 = A borrow from the 4th low-order bit of the result occurred

bit 0 C: Carry/Borrow bit (for ADDWF, SUBWF and RRF, RLF instructions)

ADDWF: RRF or RLF:

1 = A carry occurred 1 = A borrow did not occur Load bit with LSb or MSb, respectively

0 = A carry did not occur 0 = A borrow occurred

REGISTER 4-2: STATUS: STATUS REGISTER (PIC16F506)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
RBWUF	CWUF	PA0	TO	PD	Z	DC	С
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 RBWUF: PORTB Reset bit

1 = Reset due to wake-up from Sleep on pin change

0 = After power-up or other Reset

bit 6 **CWUF**: Comparator Reset bit

1 = Reset due to wake-up from Sleep on comparator change

0 = After power-up or other Reset

bit 5 PA0: Program Page Preselect bit

1 = Page 1 (200h-3FFh) 0 = Page 0 (000h-1FFh) Each page is 512 bytes.

Using the PA0 bit as a general purpose read/write bit in devices which do not use it for program page preselect is

not recommended, since this may affect upward compatibility with future products.

bit 4 **TO**: Time-Out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = A WDT time-out occurred

bit 3 **PD**: Power-Down bit

 ${\tt l}$ = After power-up or by the ${\tt CLRWDT}$ instruction

0 = By execution of the ${\tt SLEEP}$ instruction

bit 2 **Z**: Zero bit

1 = The result of an arithmetic or logic operation is zero0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit Carry/Borrow bit (for ADDWF and SUBWF instructions)

ADDWF:

1 = A carry from the 4th low-order bit of the result occurred

0 = A carry from the 4th low-order bit of the result did not occur

SUBWF:

1 = A borrow from the 4th low-order bit of the result did not occur

0 = A borrow from the 4th low-order bit of the result occurred

bit 0 C: Carry/Borrow bit (for ADDWF, SUBWF and RRF, RLF instructions)

ADDWF: SUBWF: RRF or RLF:

1 = A carry occurred 1 = A borrow did not occur Load bit with LSb or MSb, respectively

0 = A carry did not occur 0 = A borrow occurred

4.4 OPTION Register

The OPTION register is a 8-bit wide, write-only register, that contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A Reset sets the OPTION<7:0> bits.

Note 1: If TRIS bit is set to '0', the wake-up on change and pull-up functions are disabled for that pin (i.e., note that TRIS overrides Option control of GPPU/RBPU and GPWU/RBWU).

2: If the TOCS bit is set to '1', it will override the TRIS function on the TOCKI pin.

REGISTER 4-3: OPTION_REG: OPTION REGISTER (PIC12F510)

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1
GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GPWU: Enable Wake-up On Pin Change bit (GP0, GP1, GP3) 1 = Disabled 0 = Enabled					
bit 6	GPPU: Enable Weak Pull-Ups bit (GP0, GP1, GP3) 1 = Disabled 0 = Enabled					
bit 5	TOCS: Timer0 Clock Source Select bit 1 = Transition on TOCKI pin 0 = Internal instruction cycle clock (CLKOUT)					
bit 4	T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin					
bit 3	PSA: Prescaler Assignment bit 1 = Prescaler assigned to the WDT 0 = Prescaler assigned to Timer0					
bit 2-0	PS<2:0>: Prescaler Rate Select bits					
	Bit Value Timer0 Rate WDT Rate					

Bit Value	Timer0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1:256	1 : 128

REGISTER 4-4: OPTION_REG: OPTION REGISTER (PIC16F506)

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1
RBWU	RBPU	TOCS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 RBWU: Enable Wake-up On Pin Change bit (RB0, RB1, RB3, RB4)

1 = Disabled

0 = Enabled

bit 6 RBPU: Enable Weak Pull-Ups bit (RB0, RB1, RB3, RB4)

1 = Disabled

0 = Enabled

bit 5 TOCS: Timer0 Clock Source Select bit

1 = Transition on T0CKI pin

0 = Internal instruction cycle clock (CLKOUT)

bit 4 T0SE: Timer0 Source Edge Select bit

1 = Increment on high-to-low transition on T0CKI pin

0 = Increment on low-to-high transition on T0CKI pin

bit 3 PSA: Prescaler Assignment bit

1 = Prescaler assigned to the WDT

0 = Prescaler assigned to Timer0

bit 2-0 PS<2:0>: Prescaler Rate Select bits

Bit Value	Timer0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1 : 128

4.5 OSCCAL Register

The Oscillator Calibration (OSCCAL) register is used to calibrate the internal precision 4/8 MHz oscillator. It contains seven bits for calibration.

Note: Erasing the device will also erase the preprogrammed internal calibration value for the internal oscillator. The calibration value must be read prior to erasing the part so it can be reprogrammed correctly later.

After you move in the calibration constant, do not change the value. See Section 10.2.5 "Internal 4/8 MHz RC Oscillator".

REGISTER 4-5: OSCCAL: OSCILLATOR CALIBRATION REGISTER

R/W-1	U-0						
CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-1 CAL<6:0>: Oscillator Calibration bits

0111111 = Maximum frequency

•

.

000001

0000000 = Center frequency

1111111

•

.

1000000 = Minimum frequency

bit 0 **Unimplemented**: Read as '0'