imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PIC16F630/676 Data Sheet

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers

© 2010 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-60932-173-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

14-Pin, Flash-Based 8-Bit CMOS Microcontroller

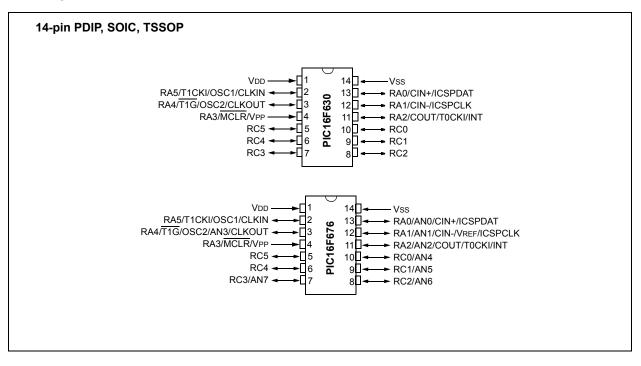
High-Performance RISC CPU:

- Only 35 Instructions to Learn
 - All single-cycle instructions except branches
- · Operating Speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- Interrupt Capability
- 8-level Deep Hardware Stack
- · Direct, Indirect, and Relative Addressing modes

Special Microcontroller Features:

- · Internal and External Oscillator Options
 - Precision Internal 4 MHz oscillator factory calibrated to $\pm 1\%$
 - External Oscillator support for crystals and resonators
 - 5 µs wake-up from Sleep, 3.0V, typical
- Power-Saving Sleep mode
- Wide Operating Voltage Range 2.0V to 5.5V
- Industrial and Extended Temperature Range
- Low-Power Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Detect (BOD)
- Watchdog Timer (WDT) with Independent Oscillator for Reliable Operation
- Multiplexed MCLR/Input-pin
- Interrupt-on-Pin Change
- Individual Programmable Weak Pull-ups
- Programmable Code Protection
- High Endurance Flash/EEPROM Cell
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/data EEPROM retention: > 40 years

Low-Power Features:


- Standby Current:
 - 1 nA @ 2.0V, typical
- Operating Current:
 - 8.5 μA @ 32 kHz, 2.0V, typical
 - 100 μA @ 1 MHz, 2.0V, typical
- Watchdog Timer Current
 - 300 nA @ 2.0V, typical
- Timer1 Oscillator Current:
 - 4 μA @ 32 kHz, 2.0V, typical

Peripheral Features:

- 12 I/O Pins with Individual Direction Control
- High Current Sink/Source for Direct LED Drive
- Analog Comparator module with:
 - One analog comparator
 - Programmable on-chip comparator voltage reference (CVREF) module
 - Programmable input multiplexing from device inputs
 - Comparator output is externally accessible
- Analog-to-Digital Converter module (PIC16F676):
 - 10-bit resolution
 - Programmable 8-channel input
 - Voltage reference input
- Timer0: 8-bit Timer/Counter with 8-bit Programmable Prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator, if INTOSC mode selected
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

	Device	Program Memory	Data Memory		I/O	10-bit A/D	Comparatora	Timers	
	Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	1/0	(ch)	Comparators	8/16-bit	
Ī	PIC16F630	1024	64	128	12	_	1	1/1	
	PIC16F676	1024	64	128	12	8	1	1/1	

Pin Diagrams

Table of Contents

Device Overview	7
Memory Organization	9
Ports A and C	21
Timer0 Module	31
Timer1 Module with Gate Control	. 34
Comparator Module	39
Analog-to-Digital Converter (A/D) Module (PIC16F676 only)	45
Special Features of the CPU	
Instruction Set Summary	73
Development Support	81
Electrical Specifications	85
DC and AC Characteristics Graphs and Tables	107
Packaging Information	117
ndix A: Data Sheet Revision History	123
ndix B: Device Differences	123
ndix C: Device Migrations	124
ndix D: Migrating from other PIC [®] Devices	124
ine Support	129
ems Information and Upgrade Hot Line	129
er Response	130
uct Identification System	131
	Memory Organization Ports A and C Timer0 Module Timer1 Module with Gate Control Comparator Module Analog-to-Digital Converter (A/D) Module (PIC16F676 only) Data EEPROM Memory Special Features of the CPU Instruction Set Summary Development Support Electrical Specifications DC and AC Characteristics Graphs and Tables

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

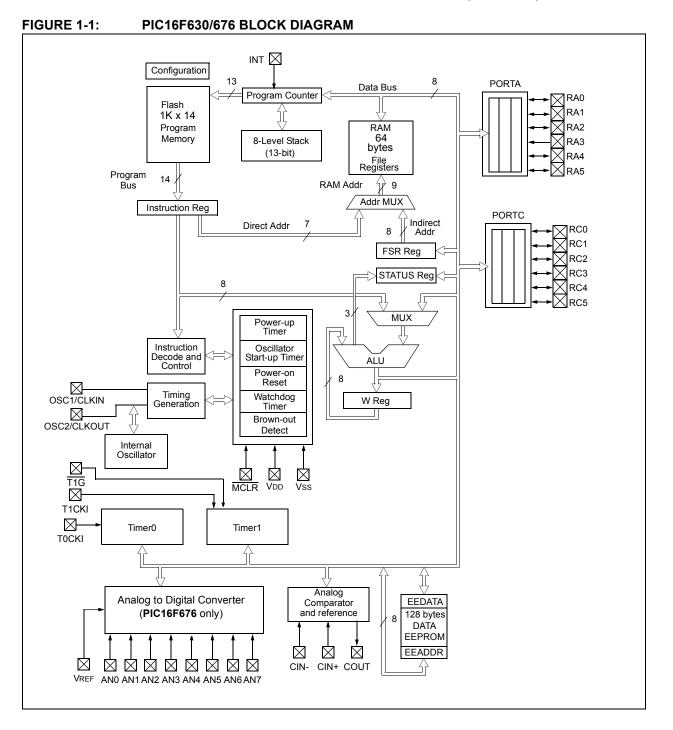
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System


Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

1.0 DEVICE OVERVIEW

This document contains device specific information for the PIC16F630/676. Additional information may be found in the PIC[®] Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this Data Sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

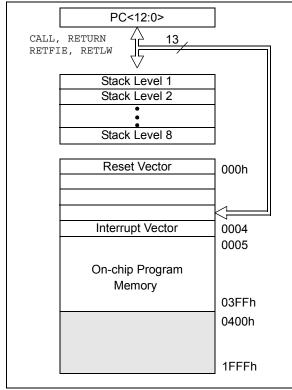
The PIC16F630 and PIC16F676 devices are covered by this Data Sheet. They are identical, except the PIC16F676 has a 10-bit A/D converter. They come in 14-pin PDIP, SOIC and TSSOP packages. Figure 1-1 shows a block diagram of the PIC16F630/676 devices. Table 1-1 shows the pinout description.

TABLE 1-1: PIC16F630/676 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description	
RA0/AN0/CIN+/ICSPDAT	RA0	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and	
				interrupt-on-change.	
	AN0	AN		A/D Channel 0 input.	
	CIN+	AN		Comparator input.	
	ICSPDAT	TTL	CMOS	Serial Programming Data I/O.	
RA1/AN1/CIN-/VREF/ ICSPCLK	RA1	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change.	
	AN1	AN	—	A/D Channel 1 input.	
	CIN-	AN	—	Comparator input.	
	VREF	AN	—	External Voltage reference.	
	ICSPCLK	ST	_	Serial Programming Clock.	
RA2/AN2/COUT/T0CKI/INT	RA2	ST	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change.	
	AN2	AN	_	A/D Channel 2 input.	
	COUT		CMOS	Comparator output.	
	TOCKI	ST	_	Timer0 clock input.	
	INT	ST	_	External Interrupt.	
RA3/MCLR/VPP	RA3	TTL	_	Input port with interrupt-on-change.	
	MCLR	ST	_	Master Clear.	
	VPP	HV	_	Programming voltage.	
RA4/T1G/AN3/OSC2/	RA4	TTL	CMOS	Bidirectional I/O w/ programmable pull-up a	
CLKOUT	T10	07		interrupt-on-change.	
	T1G	ST	—	Timer1 gate.	
	AN3	AN3		A/D Channel 3 input.	
	OSC2	_	XTAL	Crystal/Resonator.	
	CLKOUT	—	CMOS	Fosc/4 output.	
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change.	
	T1CKI	ST	—	Timer1 clock.	
	OSC1	XTAL	—	Crystal/Resonator.	
	CLKIN	ST	_	External clock input/RC oscillator connection.	
RC0/AN4	RC0	TTL	CMOS	Bidirectional I/O.	
	AN4	AN4	—	A/D Channel 4 input.	
RC1/AN5	RC1	TTL	CMOS	Bidirectional I/O.	
	AN5	AN5	—	A/D Channel 5 input.	
RC2/AN6	RC2	TTL	CMOS	Bidirectional I/O.	
	AN6	AN6		A/D Channel 6 input.	
RC3/AN7	RC3	TTL	CMOS	Bidirectional I/O.	
	AN7	AN7		A/D Channel 7 input.	
RC4	RC4	TTL	CMOS	Bidirectional I/O.	
RC5	RC5	TTL	CMOS	Bidirectional I/O.	
Vss	Vss	Power	_	Ground reference.	
VDD	VDD	Power	<u> </u>	Positive supply.	

Legend: Shade = PIC16F676 only

TTL = TTL input buffer


ST = Schmitt Trigger input buffer

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC16F630/676 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h-03FFh) for the PIC16F630/676 devices is physically implemented. Accessing a location above these boundaries will cause a wrap around within the first 1K x 14 space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

2.2 Data Memory Organization

The data memory (see Figure 2-2) is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-5Fh are General Purpose Registers, implemented as static RAM and are mapped across both banks. All other RAM is unimplemented and returns '0' when read. RP0 (STATUS<5>) is the bank select bit.

- RP0 = 0 Bank 0 is selected
- RP0 = 1 Bank 1 is selected
- Note: The IRP and RP1 bits STATUS<7:6> are reserved and should always be maintained as '0's.
- 2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64 x 8 in the PIC16F630/676 devices. Each register is accessed, either directly or indirectly, through the File Select Register FSR (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC16F630/676

	THEF	PIC16F630/676	
	File Address	A	File ddress
Indirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
PORTA	05h	TRISA	85h
	06h	-	86h
PORTC	07h	TRISC	87h
	08h	-	88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCCAL	90h
THOON	11h	ANSEL ⁽²⁾	91h
	12h	THOLE	92h
	13h	-	93h
	14h		94h
	15h	WPUA	95h
	16h	IOCA	96h
	17h	IOCA	97h
	18h		98h
CMCON	19h	VRCON	99h
CINCON	1Ah	EEDAT	9Ah
	1Bh	EEADR	9Bh
	1Ch	EECON1	9Ch
	1Dh	EECON2 ⁽¹⁾	9Dh
ADRESH ⁽²⁾	1Eh	ADRESL ⁽²⁾	9Eh
ADCON0 ⁽²⁾	1Fh	ADCON1 ⁽²⁾	9Fh
ADCONU	20h	ADCONT	A0h
General Purpose Registers 64 Bytes	2011	accesses 20h-5Fh	
	5Fh		DFh
	60h		E0h
	001		Lon
	7Fh	_	FFh
Bank 0		Bank 1	
Unimplemente1: Not a physical2: PIC16F676 on	register.	mory locations, rea	d as '0'.

TABLE 2-1:	PIC16F630/676 SPECIAL	REGISTERS SUMMARY BANK 0

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 0											
00h	INDF	Addressing	this location	uses content	ts of FSR to a	ddress data	memory (not	a physical re	gister)	XXXX XXXX	20,63
01h	TMR0	Timer0 Mod	dule's Registe	er						XXXX XXXX	31
02h	PCL	Program Co	ounter's (PC)) Least Signifi	cant Byte					0000 0000	19
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	13
04h	FSR	Indirect date	a memory Ad	dress Pointe	r					XXXX XXXX	20
05h	PORTA		—	I/O Control	Registers					xx xxxx	21
06h	_	Unimpleme	nted	1						_	_
07h	PORTC		_	I/O Control	Registers					xx xxxx	28
08h	_	Unimpleme	nted		-					_	_
09h	_	- Unimplemented					_	_			
0Ah	PCLATH	_	_	L _	Write buffer	for upper 5 b	oits of progra	m counter		0 0000	19
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RAIE	TOIF	INTF	RAIF	0000 0000	15
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	_	TMR1IF	00 00	17
0Dh	_	Unimpleme	nted				l			_	_
0Eh	TMR1L	Holding reg	ister for the I	_east Signific	ant Byte of th	e 16-bit TMR	1			xxxx xxxx	34
0Fh	TMR1H	Holding reg	ister for the I	Most Significa	ant Byte of the	e 16-bit TMR	1			xxxx xxxx	34
10h	T1CON	_	T1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	-000 0000	36
11h	_	Unimpleme	nted	1		I	J	J		_	_
12h		Unimpleme								_	_
13h	_	Unimpleme	nted							_	_
14h	_	Unimpleme	nted							-	_
15h	_	Unimpleme	nted							_	_
16h	- 1	Unimpleme	nted							_	-
17h	_	Unimpleme	nted							_	-
18h	—	Unimpleme	nted							-	_
19h	CMCON	_	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	39
1Ah	—	Unimpleme	nted							_	_
1Bh	—	Unimpleme	nted							—	_
1Ch	_	Unimpleme	nted							-	_
1Dh	_	Unimpleme	nted							-	_
1Eh	ADRESH ⁽³⁾	Most Signif	icant 8 bits o	f the left shifte	ed A/D result	or 2 bits of ri	ght shifted re	sult		xxxx xxxx	46
1Fh	ADCON0 ⁽³⁾	ADFM	VCFG	_	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	47,63

 – = Unimplemented locations read <u>as '0'</u>, <u>u</u> = unchanged, <u>x</u> = unknown, <u>q</u> = value depends on condition shaded = unimplemented
 Other (non Power-up) Resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during normal operation.
 IRP and RP1 bits are reserved, always maintain these bits clear.
 PIC16F676 only. Legend: Note 1:

2: 3:

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1											
80h	INDF	Addressing	this location	uses content	ts of FSR to a	address data	memory (not	a physical re	egister)	xxxx xxxx	20,63
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	14,32
82h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	19
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	13
84h	FSR	Indirect data	a memory Ac	1	er					xxxx xxxx	20
85h	TRISA	_		TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	21
86h	_	Unimpleme	nted	•		•	•	•		-	_
87h	TRISC	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	-
88h	—	Unimpleme	nted							_	-
89h	—	Unimpleme	nted							_	-
8Ah	PCLATH	_		—	Write buffer	for upper 5 l	oits of progra	m counter		0 0000	19
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	15
8Ch	PIE1	EEIE	ADIE	—	—	CMIE	—	—	TMR1IE	0000	16
8Dh	—	Unimpleme	nted	•		-	-			-	-
8Eh	PCON	—	_	—	_	_	_	POR	BOD	dd	18
8Fh	—									-	
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_	1000 00	18
91h	ANSEL ⁽³⁾	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	48
92h	—	Unimpleme	nted							-	-
93h	—	Unimpleme	nted							_	-
94h	—	Unimpleme	nted							-	-
95h	WPUA	—	—	WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0	11 -111	22
96h	IOCA	_	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	23
97h	_	Unimpleme	nted							-	-
98h	_	Unimpleme	nted							-	-
99h	VRCON	VREN	_	VRR	_	VR3	VR2	VR1	VR0	0-0- 0000	44
9Ah	EEDAT	EEPROM d	lata register							0000 0000	51
9Bh	EEADR	_	EEPROM a	ddress regis	ter					0000 0000	51
9Ch	EECON1	_	_	—	_	WRERR	WREN	WR	RD	x000	52
9Dh	EECON2	EEPROM c	ontrol registe	er 2 (not a ph	ysical registe	r)					51
9Eh	ADRESL ⁽³⁾	Least Signif	ficant 2 bits c	f the left shift	ted result or 8	3 bits of the ri	ght shifted re	sult		xxxx xxxx	46
9Fh	ADCON1 ⁽³⁾	—	ADCS2	ADCS1	ADCS0	-	—	—	—	-000	47,63
Legend Note 1 2 3	: Other (non Po : IRP and RP1	ower-up) Res bits are rese	sets include N	ICLR Reset,	Brown-out D	= unknown, etect and Wa	g = value dep atchdog Time	ends on con r Reset durir	dition, shade ng normal ope	ed = unimplemer eration.	ited

TABLE 2-2: PIC16F630/676 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- the arithmetic status of the ALU
- · the Reset status
- the bank select bits for data memory (SRAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see Section 10.0 "Instruction Set Summary".

- **Note 1:** Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC16F630/676 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a Borrow and <u>Digit</u> Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1:	STATUS — STATUS REGISTER (ADDRESS: 03h OR 83h)
---------------	--

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7	IRP: This b	oit is reserve	d and shoul	d be mainta	ined as '0'			
bit 6	RP1: This	bit is reserve	ed and shou	ld be mainta	ined as '0'			
bit 5	-	ster Bank Se (80h-FFh)	elect bit (use	d for direct	addressing)			
L:1 1	$\overline{\mathbf{TO}}$: Time-o	. ,						
bit 4	1 = After p	ower-up, CLI itime-out oc		ction, or SLE	EP instruction	on		
bit 3		-Down bit ower-up or b cution of the			n			
bit 2		sult of an ari sult of an ari				D		
bit 1	For borrow 1 = A carry	arry/borrow , the polarity -out from the ry-out from t	is reversed e 4th low or	der bit of the	e result occu	instructions) rred		
bit 0	1 = A carry	prrow bit (AD -out from the ry-out from t	e Most Sign	ificant bit of	the result or	curred		
	Note:	complemen	t of the sec	ond operan	d. For rotate	on is execut e (RRF, RLF) e source reg	instruction	0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- TMR0/WDT prescaler
- External RA2/INT interrupt
- TMR0
- Weak pull-ups on PORTA

REGISTER 2-2: OPTION_REG — OPTION REGISTER (ADDRESS: 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
	bit 7							bit 0
bit 7			ip Enable bit					
			are disabled are enabled l	oy individual	PORT latch	values		
bit 6		· ·	lge Select bi	•		Valueo		
			edge of RA					
	0 = Interru	pt on falling	g edge of RA	2/INT pin				
bit 5			Source Selec	t bit				
			2/T0CKI pin n cycle clock					
bit 4			Edge Select	· ,				
				sition on RA2	2/T0CKI pin			
	0 = Increm	nent on low	-to-high trans	sition on RA2	2/T0CKI pin			
bit 3		caler Assig						
			ned to the V aned to the T	imer0 modul	9			
bit 2-0		-	Rate Select I		-			
		Bit Value	TMR0 Rate	WDT Rate				
	-	000	1:2	1:1				
		001	1:4	1:2				
		010	1:8	1:4				
		011 100	1 : 16 1 : 32	1:8 1:16				
		101	1:64	1:32				
		110	1 : 128	1:64				
		111	1 : 256	1 : 128				
	Legend:]

L	_egend:			
F	R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT by setting PSA bit to '1' (OPTION<3>). See Section 4.4 "Prescaler".

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, PORTA change and external RA2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON — INTERRUPT CONTROL REGISTER (ADDRESS: 0Bh OR 8Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	
	bit 7							bit 0	
bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts								
bit 6	 PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts 								
bit 5	TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt								
bit 4	1 = Enable	s the RA2/I	al Interrupt E NT external NT external	interrupt					
bit 3	1 = Enable	s the PORT	errupt Enab A change in A change ir	terrupt					
bit 2	1 = TMR0	register has	Interrupt Fla overflowed not overflow	(must be cle	eared in soft	ware)			
bit 1	INTF: RA2/INT External Interrupt Flag bit 1 = The RA2/INT external interrupt occurred (must be cleared in software) 0 = The RA2/INT external interrupt did not occur								
bit 0	RAIF: Port Change Interrupt Flag bit 1 = When at least one of the PORTA <5:0> pins changed state (must be cleared in software) 0 = None of the PORTA <5:0> pins have changed state								
	Note 1: IOCA register must also be enabled.								
	 T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before clearing T0IF bit. 								
	Legend:								
	R = Reada	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'	

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR

x = Bit is unknown

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4:	PIE1 — PE	RIPHERA		JPT ENAB	LE REGIS	TER 1 (AD	DRESS: 80	Ch)
	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
	EEIE	ADIE	_		CMIE		_	TMR1IE
	bit 7							bit 0
bit 7	EEIE: EE Write Complete Interrupt Enable bit 1 = Enables the EE write complete interrupt 0 = Disables the EE write complete interrupt							
bit 6	ADIE: A/D Converter Interrupt Enable bit (PIC16F676 only) 1 = Enables the A/D converter interrupt 0 = Disables the A/D converter interrupt							
bit 5-4	Unimplem	ented: Rea	d as '0'					
bit 3	CMIE: Comparator Interrupt Enable bit 1 = Enables the comparator interrupt 0 = Disables the comparator interrupt							
bit 2-1	Unimplem	ented: Rea	d as '0'					
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt							
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	0'
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown

2.2.2.5 PIR1 Register

bit

bit

bit bit

bit bit

The PIR1 register contains the interrupt flag bits, as shown in Register 2-5.

- n = Value at POR

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 — PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)

	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0		
	EEIF	ADIF		_	CMIF	_	_	TMR1IF		
	bit 7							bit 0		
t 7	EEIF: EEPROM Write Operation Interrupt Flag bit 1 = The write operation completed (must be cleared in software) 0 = The write operation has not completed or has not been started									
t 6	ADIF: A/D Converter Interrupt Flag bit (PIC16F676 only) 1 = The A/D conversion is complete (must be cleared in software) 0 = The A/D conversion is not complete									
t 5-4	Unimplemented: Read as '0'									
t 3	CMIF : Comparator Interrupt Flag bit 1 = Comparator input has changed (must be cleared in software) 0 = Comparator input has not changed									
t 2-1	Unimplem	Unimplemented: Read as '0'								
t 0	TMR1IF : TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow									
	Legend:									
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit, read as '	0'		

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- · Power-on Reset (POR)
- Brown-out Detect (BOD)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON Register bits are shown in Register 2-6.

REGISTER 2-6: PCON — POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
_	_	_	—	_	-	POR	BOD
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR:** Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOD: Brown-out Detect Status bit

- 1 = No Brown-out Detect occurred
- 0 = A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

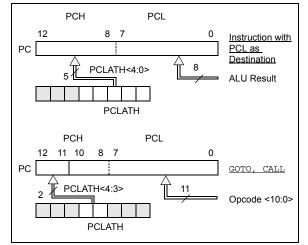
2.2.2.7 OSCCAL Register

bit 7-2

bit 1-0

The Oscillator Calibration register (OSCCAL) is used to calibrate the internal 4 MHz oscillator. It contains 6 bits to adjust the frequency up or down to achieve 4 MHz.

The OSCCAL register bits are shown in Register 2-7.


REGISTER 2-7: OSCCAL—INTERNALOSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)

							-	
R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_	
bit 7							bit (
111111 = Maximum frequency 100000 = Center frequency 000000 = Minimum frequency								
Unimplemer	n ted: Read	d as '0'						
Legend:								
R = Readabl	e bit	W = W	ritable bit	U = Unin	nplemented	bit, read as	'0'	
- n = Value a	t POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown	

2.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The PIC16F630/676 family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

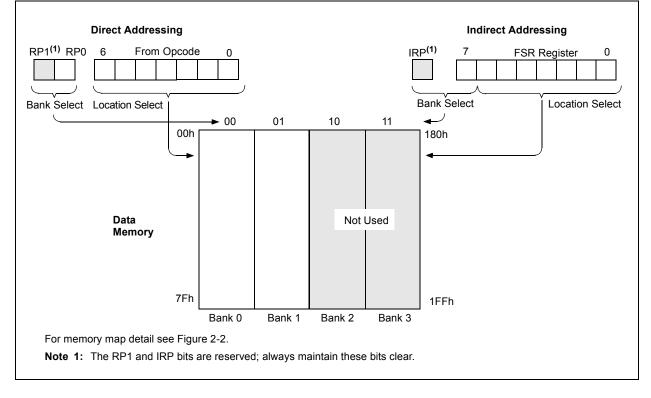
The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no Status bits to indicate Stack Overflow or Stack Underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-4.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT ADDRESSING

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			;yes continue

FIGURE 2-4: DIRECT/INDIRECT ADDRESSING PIC16F630/676

3.0 PORTS A AND C

There are as many as twelve general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

Note:	Additional information on I/O ports may be
	found in the PIC [®] Mid-Range Reference
	Manual, (DS33023)

3.1 PORTA and the TRISA Registers

PORTA is an 6-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 3-1 shows how to initialize PORTA.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLREN = 1.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA

register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Ī	Note:	The ANSEL (91h) and CMCON (19h)					
		registers must be initialized to configure an					
		analog channel as a digital input. Pins					
		configured as analog inputs will read '0'.					
		The ANSEL register is defined for the					
		PIC16F676.					

EXAMPLE 3-1: INITIALIZING PORTA

BCF	STATUS, RPO	;Bank 0
CLRF	PORTA	;Init PORTA
MOVLW	05h	;Set RA<2:0> to
MOVWF	CMCON	;digital I/O
BSF	STATUS, RPO	;Bank 1
CLRF	ANSEL	;digital I/O
MOVLW	0Ch	;Set RA<3:2> as inputs
MOVWF	TRISA	;and set RA<5:4,1:0>
		;as outputs
BCF	STATUS, RPO	;Bank 0
J		

3.2 Additional Pin Functions

Every PORTA pin on the PIC16F630/676 has an interrupt-on-change option and every PORTA pin, except RA3, has a weak pull-up option. The next two sections describe these functions.

3.2.1 WEAK PULL-UP

Each of the PORTA pins, except RA3, has an individually configurable weak internal pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 3-3. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RAPU bit (OPTION<7>).

U-0 R/W-x R/W-x R/W-x U-0 R/W-x R/W-x R/W-x RA5 RA4 RA3 RA2 RA1 RA0 bit 7 bit 0

PORTA — PORTA REGISTER (ADDRESS: 05h)

bit 7-6: Unimplemented: Read as '0'

bit 5-0: **PORTA<5:0>**: PORTA I/O pin bits

1 = Port pin is >VIH

0 = Port pin is <VIL

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 3-1:

REGISTER 3-2:	TRISA — PORTA TRI-STATE REGISTER (ADDRESS: 85h)

U-0	U-0	R/W-x	R/W-x	R-1	R/W-x	R/W-x	R/W-x
_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

bit 7-6: Unimplemented: Read as '0'

bit 5-0: TRISA<5:0>: PORTA Tri-State Control bits

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note: TRISA<3> always reads 1.

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

REGISTER 3-3: WPUA — WEAK PULL-UP REGISTER (ADDRESS: 95h)

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1
_	—	WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 WPUA<5:4>: Weak Pull-up Register bits
 - 1 = Pull-up enabled

0 = Pull-up disabled

- bit 3 Unimplemented: Read as '0'
- bit 2-0 WPUA<2:0>: Weak Pull-up Register bits
 - 1 = Pull-up enabled
 - 0 = Pull-up disabled
 - **Note 1:** Global RAPU must be enabled for individual pull-ups to be enabled.
 - 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISA = 0).

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

3.2.2 INTERRUPT-ON-CHANGE

Each of the PORTA pins is individually configurable as an interrupt-on-change pin. Control bits IOCAx enable or disable the interrupt function for each pin. Refer to Register 3-4. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set, the PORTA Change Interrupt flag bit (RAIF) in the INTCON register. This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTA. This will end the mismatch condition.
- b) Clear the flag bit RAIF.

A mismatch condition will continue to set flag bit RAIF. Reading PORTA will end the mismatch condition and allow flag bit RAIF to be cleared.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RAIF interrupt flag may not get set.

REGISTER 3-4: IOCA — INTERRUPT-ON-CHANGE PORTA REGISTER (ADDRESS: 96h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-0

IOCA<5:0>: Interrupt-on-Change PORTA Control bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.

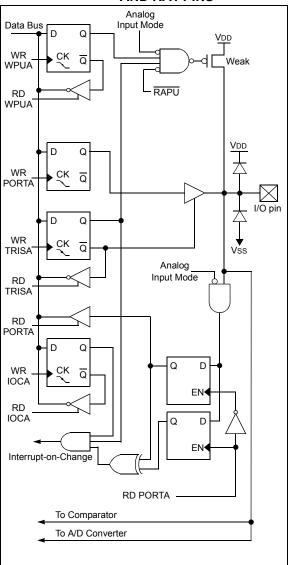
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

3.2.3 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D, refer to the appropriate section in this Data Sheet.

3.2.3.1 RA0/AN0/CIN+

Figure 3-1 shows the diagram for this pin. The RA0 pin is configurable to function as one of the following:


- a general purpose I/O
- an analog input for the A/D (PIC16F676 only)
- · an analog input to the comparator

3.2.3.2 RA1/AN1/CIN-/VREF

Figure 3-1 shows the diagram for this pin. The RA1 pin is configurable to function as one of the following:

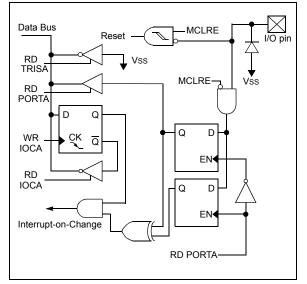
- as a general purpose I/O
- an analog input for the A/D (PIC16F676 only)
- an analog input to the comparator
- a voltage reference input for the A/D (PIC16F676 only)

FIGURE 3-1: BLOCK DIAGRAM OF RA0 AND RA1 PINS

3.2.3.3 RA2/AN2/T0CKI/INT/COUT

Figure 3-2 shows the diagram for this pin. The RA2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D (PIC16F676 only)
- · a digital output from the comparator
- the clock input for TMR0
- · an external edge triggered interrupt


BLOCK DIAGRAM OF RA2 FIGURE 3-2: Analog Data Bus Input Mode Q D Vdd WR СК Q Weak WPUA RAPU RD WPUA Analog COUT Input Mode Enable Vdd D Q +WR СК Q COUT PORTA 1 \times I/O pin Ż Q D WR **∀** Vss СК Q TRIS. Analog Input Mode RD Ч TRISA RD PORTA Q П D Q WR CK Q IOCA EN RD IOCA D Q EN Interrupt-on-Change **RD PORTA** To TMR0 To INT To A/D Converter

3.2.3.4 RA3/MCLR/VPP

Figure 3-3 shows the diagram for this pin. The RA3 pin is configurable to function as one of the following:

- a general purpose input
- · as Master Clear Reset

FIGURE 3-3: BLOCK DIAGRAM OF RA3

