imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PIC16F688 Data Sheet

14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology

Note the following details of the code protection feature on Microchip devices:

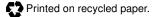
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and water fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

PIC16F688

14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology

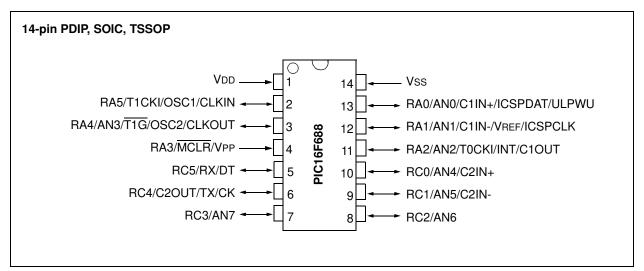
High-Performance RISC CPU:

- · Only 35 Instructions to Learn:
- All single-cycle instructions except branches
- Operating Speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- Interrupt Capability
- 8-level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes

Special Microcontroller Features:

- Precision Internal Oscillator:
 - Factory calibrated to ±1%
 - Software selectable frequency range of 8 MHz to 125 kHz
 - Software tunable
 - Two-Speed Start-Up mode
 - Crystal fail detect for critical applications
- Clock mode switching during operation for power savings
- Power-Saving Sleep mode
- Wide Operating Voltage Range (2.0V-5.5V)
- Industrial and Extended Temperature Range
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR) with Software Control
 Option
- Enhanced Low-Current Watchdog Timer (WDT) with on-chip oscillator (software selectable nominal 268 seconds with full prescaler) with software enable
- Multiplexed Master Clear with Weak Pull-up or Input Only Pin
- Programmable Code Protection
- High-Endurance Flash/EEPROM Cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/Data EEPROM retention: > 40 years

Low-Power Features:


- · Standby Current:
 - 50 nA @ 2.0V, typical
- · Operating Current:
 - 11 μA @ 32 kHz, 2.0V, typical
 - 220 μA @ 4 MHz, 2.0V, typical
- Watchdog Timer Current:
 - 1 μA @ 2.0V, typical

Peripheral Features:

- 12 I/O Pins with Individual Direction Control:
 - High-current source/sink for direct LED drive
 - Interrupt-on-change pin
 - Individually programmable weak pull-ups
 - Ultra Low-Power Wake-up
- Analog Comparator module with:
 - Two analog comparators
 - Programmable On-chip Voltage Reference (CVREF) module (% of VDD)
 - Comparator inputs and outputs externally accessible
- A/D Converter:
 - 10-bit resolution and 8 channels
- Timer0: 8-bit Timer/Counter with 8-bit Programmable Prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Timer1 Gate (count enable)
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator if INTOSC mode selected
- Enhanced USART Module:
 - Supports RS-485, RS-232, LIN 2.0/2.1 and J2602
 - Auto-Baud Detect
 - Auto-wake-up on Start bit
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Device	Program Memory	Data Memory			10-bit A/D	Comporatoro	Timers	
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	I/O	(ch)	Comparators	8/16-bit	
PIC16F688	4096	256	256	12	8	2	1/1	

Pin Diagram (PDIP, SOIC, TSSOP)

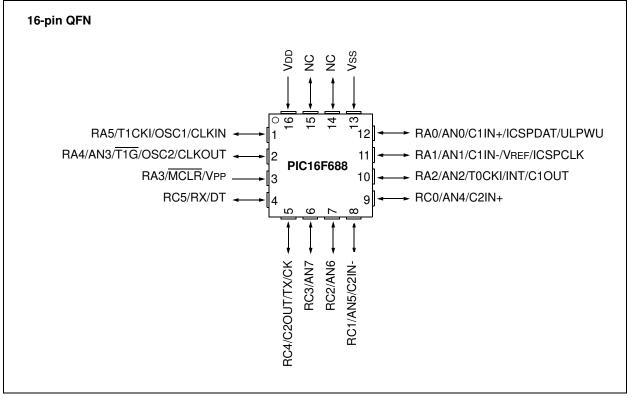


TABLE 1: PIC16F688 14-PIN SUMMARY (PDIP, SOIC, TSSOP)

			······································							
I/O	Pin	Analog	Comparators	Timers	EUSART	Interrupt	Pull-up	Basic		
RA0	13	AN0/ULPWU	C1IN+		—	IOC	Y	ICSPDAT		
RA1	12	AN1	C1IN-	_	—	IOC	Y	VREF/ICSPCLK		
RA2	11	AN2	C1OUT	T0CKI	_	IOC/INT	Y	—		
RA3	4	_	_		_	IOC	Y(1)	MCLR/VPP		
RA4	3	AN3	—	T1G	—	IOC	Y	OSC2/CLKOUT		
RA5	2	—	—	T1CKI	_	IOC	Y	OSC1/CLKIN		
RC0	10	AN4	C2IN+	—	_	_	—	—		
RC1	9	AN5	C2IN-	—	_		—	—		
RC2	8	AN6	—	_	_		_	—		
RC3	7	AN7	_		_		_	—		
RC4	6		C2OUT		TX/CK		_	—		
RC5	5		_	_	RX/DT		_	_		
	1		_	_	_		_	Vdd		
	14				_	_		Vss		

Note 1:	Pull-up activated only with external MCLR configurat	ion.
---------	--	------

Pin Diagram (QFN)

TABLE 2:	PIC16F688	16-PIN SUMMARY	(QFN)
IADLL 2.			

RA0 12 AN0/ULPWU C1IN+ — — IOC RA1 11 AN1 C1IN- — — IOC RA2 10 AN2 C1OUT T0CKI — IOC/INT									
RA1 11 AN1 C1IN- - - IOC RA2 10 AN2 C1OUT T0CKI - IOC/INT RA3 3 - - - - IOC N RA4 2 AN3 - TIG - IOC N RA5 1 - - T1CKI - IOC N	ull-up	Basic							
RA2 10 AN2 C1OUT T0CKI — IOC/INT RA3 3 — — — — IOC M RA4 2 AN3 — TIG — IOC M RA5 1 — — T1CKI — IOC M	Y	ICSPDAT							
RA3 3 - - - - IOC M RA4 2 AN3 - TIG - IOC M RA5 1 - - TICKI - IOC M	Y	VREF/ICSPCLK							
RA4 2 AN3 — TIG — IOC RA5 1 — — T1CKI — IOC	Y								
RA5 1 — — T1CKI — IOC	Y ⁽¹⁾	MCLR/VPP							
	Y	OSC2/CLKOUT							
RC0 9 AN4 C2IN+ — — —	Y	OSC1/CLKIN							
	—								
RC1 8 AN5 C2IN- — — —	—	_							
RC2 7 AN6 — — — — —	—								
RC3 6 AN7 — — — — —	—	_							
RC4 5 — C2OUT — TX/CK —	_								
RC5 4 — — RX/DT —	—	_							
<u> </u>	_	Vdd							
_ 13	—	Vss							
_ 14	_	NC							
_ 15	_	NC							

Note 1: Pull-up activated only with external MCLR configuration.

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	7
3.0	Clock Sources	. 21
4.0	I/O Ports	. 33
5.0	Timer0 Module	
6.0	Timer1 Module with Gate Control	
7.0	Comparator Module	. 55
8.0	Analog-to-Digital Converter (A/D) Module	. 65
9.0	Data EEPROM and Flash Program Memory Control	
10.0	Enhanced Universal Asynchronous Receiver Transmitter (EUSART)	. 83
11.0	Special Features of the CPU	109
12.0	Instruction Set Summary	129
13.0	Development Support	
14.0	Electrical Specifications	
15.0	DC and AC Characteristics Graphs and Tables	163
16.0	Packaging Information	185
Appe	ndix A: Data Sheet Revision History	193
Appe	ndix B: Migrating from other PIC [®] Devices	193
	<	
On-li	ne Support	199
Syste	ems Information and Upgrade Hot Line	199
	ler Response	
Prod	uct Identification System	201

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The PIC16F688 is covered by this data sheet. It is available in 14-pin PDIP, SOIC, TSSOP and QFN packages. Figure 1-1 shows a block diagram of the PIC16F688 device. Table 1-1 shows the pinout description.

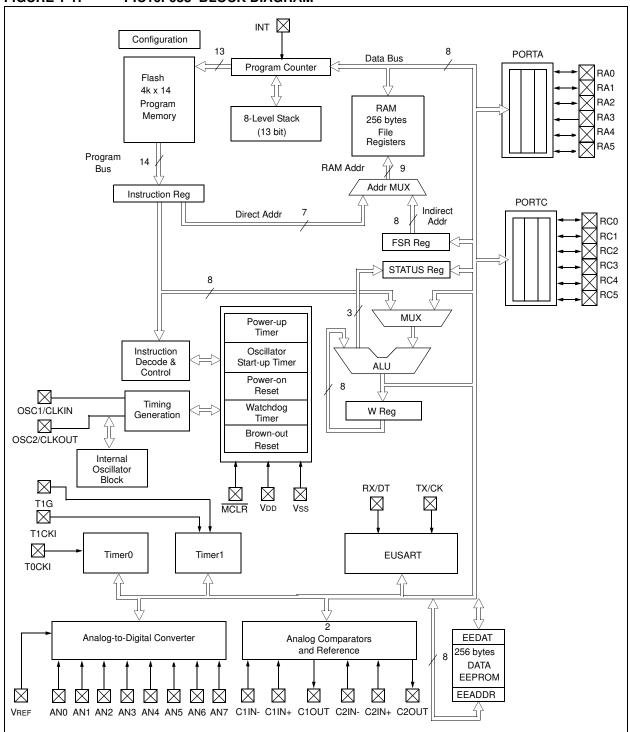


FIGURE 1-1: PIC16F688 BLOCK DIAGRAM

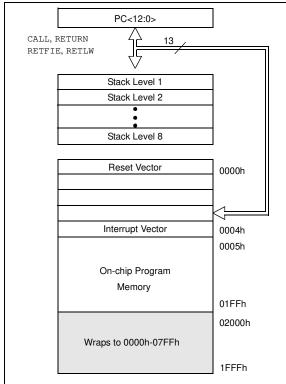
TABLE 1-1: PIC16F688 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/ICSPDAT/ULPWU	RA0	TTL	CMOS	PORTA I/O w/prog pull-up and interrupt-on-change
	AN0	AN	—	A/D Channel 0 input
	C1IN+	AN		Comparator 1 input
	ICSPDAT	TTL	CMOS	Serial Programming Data I/O
	ULPWU	AN	—	Ultra Low-Power Wake-up input
RA1/AN1/C1IN-/VREF/ICSPCLK	RA1	TTL	CMOS	PORTA I/O w/prog pull-up and interrupt-on-change
	AN1	AN		A/D Channel 1 input
	C1IN-	AN		Comparator 1 input
	VREF	AN	—	External Voltage Reference for A/D
	ICSPCLK	ST		Serial Programming Clock
RA2/AN2/T0CKI/INT/C1OUT	RA2	ST	CMOS	PORTA I/O w/prog pull-up and interrupt-on-change
	AN2	AN	_	A/D Channel 2 input
	T0CKI	ST	_	Timer0 clock input
	INT	ST	_	External Interrupt
	C1OUT	—	CMOS	Comparator 1 output
RA3/MCLR/VPP	RA3	TTL	_	PORTA input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	Vpp	HV	—	Programming voltage
RA4/AN3/T1G/OSC2/CLKOUT	RA4	TTL	CMOS	PORTA I/O w/prog pull-up and interrupt-on-change
	AN3	AN		A/D Channel 3 input
	T1G	ST	_	Timer1 gate
	OSC2	_	XTAL	Crystal/Resonator
	CLKOUT	—	CMOS	Fosc/4 output
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	PORTA I/O w/prog pull-up and interrupt-on-change
	T1CKI	ST		Timer1 clock
	OSC1	XTAL		Crystal/Resonator
	CLKIN	ST		External clock input/RC oscillator connection
RC0/AN4/C2IN+	RC0	TTL	CMOS	PORTC I/O
	AN4	AN		A/D Channel 4 input
	C2IN+	AN		Comparator 2 input
RC1/AN5/C2IN-	RC1	TTL	CMOS	PORTC I/O
	AN5	AN	_	A/D Channel 5 input
	C2IN-	AN		Comparator 2 input
RC2/AN6	RC2	TTL	CMOS	PORTC I/O
	AN6	AN		A/D Channel 6 input
RC3/AN7	RC3	TTL	CMOS	PORTC I/O
	AN7	AN		A/D Channel 7 input
RC4/C2OUT/TX/CK	RC4	TTL	CMOS	PORTC I/O
	C2OUT		CMOS	Comparator 2 output
	TX	_	CMOS	USART asynchronous output
	СК	ST	CMOS	USART asynchronous clock
RC5/RX/DT	RC5	TTL	CMOS	Port C I/O
	RX	ST	CMOS	USART asynchronous input
	DT	ST	CMOS	USART asynchronous data
Vss	Vss	Power	_	Ground reference
				Positive supply

Legend: AN = Analog input or output TTL = TTL compatible input CMOS = CMOS compatible input or output

OC = Open collector output

HV = High Voltage


ST = Schmitt Trigger input with CMOS levels XTAL = Crystal

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC16F688 has a 13-bit program counter capable of addressing a 4K x 14 program memory space. Only the first 4K x 14 (0000h-01FFF) for the PIC16F688 is physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 4K x 14 space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

2.2 Data Memory Organization

The data memory is partitioned into multiple banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). Bits RP0 and RP1 are bank select bits.

<u>RP1</u> <u>RP0</u>

0	0	\rightarrow	Bank 0 is selected
0	1	\rightarrow	Bank 1 is selected
1	0	\rightarrow	Bank 2 is selected
1	1	\rightarrow	Bank 3 is selected

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are the General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank are mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 256×8 in the PIC16F688. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Tables 2-1, 2-2, 2-3 and 2-4). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: PIC16F688 SPECIAL FUNCTION REGISTERS

	File Address		File Address		File Address		File Addres
ndirect addr. (1)		Indirect addr. (1)		Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
	06h		86h		106h		186h
PORTC	07h	TRISC	87h	PORTC	107h	TRISC	187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch		10Ch		18Ch
	0Dh		8Dh		10Dh		18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh		10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
BAUDCTL	11h	ANSEL	91h		111h		191h
SPBRGH	12h		92h		112h		192h
SPBRG	13h		93h		113h		193h
RCREG	14h		94h		114h		194h
TXREG	15h	WPUA	95h		115h		195h
TXSTA	16h	IOCA	96h		116h		196h
RCSTA	17h	EEDATH	97h		117h		197h
WDTCON	18h	EEADRH	98h		118h		198h
CMCON0	19h	VRCON	99h		119h		199h
CMCON1	1Ah	EEDAT	9Ah		11Ah		19Ah
	1Bh	EEADR	9Bh		11Bh		19Bh
	1Ch	EECON1	9Ch		11Ch		19Ch
	1Dh	EECON2 ⁽¹⁾	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
		General		General			
General		Purpose		Purpose			
Purpose		Register		Register			
Register							
OF Dutos		80 Bytes		80 Bytes			
96 Bytes			EFh		16Fh		1EFh
	7Fh	accesses Bank 0	F0h FFh	accesses Bank 0	170h 17Fh	accesses Bank 0	1F0h 1FFh
Bank 0	1	Bank 1	1	Bank 2		Bank 3	

Note 1: Not a physical register.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Page
Bank 0											
00h	INDF	Addressing	g this locatio	on uses conte	ents of FSR t	o address da	ta memory (not a physica	al register)	xxxx xxxx	20, 117
01h	TMR0	Timer0 Mo	dule's regis		XXXX XXXX	45, 117					
02h	PCL	Program C	ounter's (P		0000 0000	19, 117					
03h	STATUS	IRP	RP1	С	0001 1xxx	13, 117					
04h	FSR	Indirect Da	ta Memory	Address Poir	nter					XXXX XXXX	20, 117
05h	PORTA	_	— — RA5 RA4 RA3 RA2 RA1 RA0								33, 117
06h		Unimpleme	ented							—	_
07h	PORTC	—	_	RC5	RC4	RC3	RC2	RC1	RC0	xx 0000	42, 117
08h		Unimpleme	ented	•	•		•		•	_	_
09h		Unimpleme	ented							_	_
0Ah	PCLATH	_	—	—	Write Buffer	for upper 5	oits of Progr	am Counter		0 0000	19, 117
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF ⁽²⁾	0000 000x	15, 117
0Ch	PIR1	EEIF	ADIF	RCIF	C2IF	C1IF	OSFIF	TXIF	TMR1IF	0000 0000	17, 117
0Dh	_	Unimpleme	ented							—	_
0Eh	TMR1L	Holding Re	egister for th	e Least Sign	ificant Byte c	of the 16-bit T	MR1			xxxx xxxx	48, 117
0Fh	TMR1H	Holding Re	egister for th	e Most Signi	ificant Byte o	f the 16-bit TI	MR1			xxxx xxxx	48, 117
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	0000 0000	51, 117
11h	BAUDCTL	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	94, 117
12h	SPBRGH	USART Ba	ud Rate Hig	gh Generator	r					0000 0000	95, 117
13h	SPBRG		ud Rate Ge							0000 0000	95, 117
14h	RCREG	USART Re	eceive Regis	ster						0000 0000	87, 117
15h	TXREG	USART Tra	ansmit Regi	ster						0000 0000	87, 117
16h	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	92, 117
17h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	93, 117
18h	WDTCON	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	124, 117
19h	CMCON0	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	61, 117
1Ah	CMCON1	_	—	—	_	_	_	T1GSS	C2SYNC	10	62, 117
1Bh		Unimpleme	ented							_	
1Ch	_	Unimpleme	ented							_	_
1Dh	_	Unimpleme								_	_
1Eh	ADRESH	•		of the left sh	ifted A/D res	ult or 2 bits o	f right shifted	d result		XXXX XXXX	72, 117
1Fh	ADCON0	ADFM	VCFG	_	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	71, 117

TABLE 2-1: PIC16F688 SPECIAL REGISTERS SUMMARY BANK 0

Legend: - = Unimplemented locations read as $\frac{10^{\circ}}{10^{\circ}}$ u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1:

Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. MCLR and WDT Reset does not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the 2: mismatched exists.

PIC16F688

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Page	
Bank 1												
80h	INDF	Addressin	g this location	al register)	XXXX XXXX	20, 117						
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	14, 117	
82h	PCL	Program C	Counter's (P		0000 0000	19, 117						
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	13, 117	
84h	FSR	Indirect Da	direct Data Memory Address Pointer									
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	33, 117	
86h	—	Unimplem	ented							—	_	
87h	TRISC			TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	42, 117	
88h	_	Unimplem	ented							_	_	
89h	_	Unimplem	ented							_	_	
8Ah	PCLATH				Write Buffer	for upper 5	bits of Progra	am Counter		0 0000	19, 117	
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF ⁽³⁾	0000 000x	15, 117	
8Ch	PIE1	EEIE	ADIE	RCIE	C2IE	C1IE	OSFIE	TXIE	TMR1IE	0000 0000	16, 117	
8Dh	_	Unimplem	ented							_	_	
8Eh	PCON	_		ULPWUE	SBOREN	—	-	POR	BOR	01qq	18, 117	
8Fh	OSCCON		IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 x000	22, 118	
90h	OSCTUNE	_			TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	26, 118	
91h	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	34, 118	
92h	_	Unimplem	ented							_	_	
93h	_	Unimplem	ented							_	_	
94h	_	Unimplem	ented							_	_	
95h	WPUA ⁽²⁾			WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0	11 -111	35, 118	
96h	IOCA			IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	35, 118	
97h	EEDATH	_	-	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	78, 118	
98h	EEADRH			I	I	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0000	78, 118	
99h	VRCON	VREN		VRR		VR3	VR2	VR1	VR0	0-0- 0000	63, 118	
9Ah	EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	78, 118	
9Bh	EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	78, 118	
9Ch	EECON1	EEPGD	_	_	_	WRERR	WREN	WR	RD	x x000	79, 118	
9Dh	EECON2	EEPROM	Control 2 R	egister (not a	a physical reg	gister)					77, 118	
9Eh	ADRESL	Least Sigr	nificant 2 bit	s of the left s	hifted result of	or 8 bits of th	e right shifted	d result		xxxx xxxx	72, 118	
9Fh	ADCON1	—	ADCS2	ADCS1	ADCS0		_	_	_	-000	71, 118	

PIC16E688 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1 TABI F 2-2.

- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. Legend:

Note 1:

2: RA3 pull-up is enabled when pin is configured as MCLR in the Configuration Word register.

MCLR and WDT Reset does not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the mismatched exists. 3:

IABL	E 2-3:	PICIOF	000 SPE		EGISTEI	12 20101	WARTB	ANK 2	-		
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Page
Bank 2											
100h	INDF	Addressing	this locatior	n uses conte	ents of FSR t	o address da	ta memory (not a physic	al register)	XXXX XXXX	20, 117
101h	TMR0	Timer0 Mo	dule's registe	ər						XXXX XXXX	45, 117
102h	PCL	Program C	ounter's (PC) Least Sigr	ificant Byte					0000 0000	19, 117
103h	STATUS	IRP	RP1	С	0001 1xxx	13, 117					
104h	FSR	Indirect Da	ta Memory A	ddress Poir		XXXX XXXX	20, 117				
105h	PORTA	_	- RA5 RA4 RA3 RA2 RA1 RA0								33, 117
106h	_	Unimpleme	ented							—	_
107h	PORTC	_	_	RC5	RC4	RC3	RC2	RC1	RC0	xx 0000	42, 117
108h	_	Unimpleme	ented	•	•		•	•	•	_	_
109h	_	Unimpleme	ented							_	_
10Ah	PCLATH	_	_		Write Buffe	r for upper 5	bits of Prog	ram Counter		0 0000	19, 117
10Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF ⁽²⁾	0000 000x	15, 117
10Ch	_	Unimpleme	ented	•	•		•	•	•	_	_
10Dh	_	Unimpleme	ented							_	_
10Eh	_	Unimpleme	ented							_	_
10Fh	_	Unimpleme	ented							_	_
110h	_	Unimpleme	ented							_	_
111h	_	Unimpleme	ented							_	_
112h	_	Unimpleme	ented							_	_
113h	_	Unimpleme	ented							_	_
114h	_	Unimpleme	ented							_	-
115h	_	Unimpleme	ented							_	_
116h	_	Unimpleme	ented							_	_
117h	_	Unimpleme	ented							_	_
118h	_	Unimpleme	ented							_	-
119h	_	Unimpleme	ented							_	-
11Ah	_	Unimpleme	ented							—	_
11Bh	_	Unimpleme	ented							—	_
11Ch	_	Unimpleme	ented							—	_
11Dh	_	Unimpleme								_	_
11Eh	_	Unimpleme	ented							—	_
11Fh	_	Unimpleme	ented							—	_

PIC16F688 SPECIAL REGISTERS SUMMARY BANK 2 **TABLE 2-3:**

Legend: Note

- = Unimplemented locations read as $\underline{0^{\circ}, u}$ = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented 1:

Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. MCLR and WDT Reset does not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the 2: mismatched exists.

PIC16F688

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Page
Bank 3											
180h	INDF	Addressing	this location	n uses conte	ents of FSR to	o address da	ata memory (not a physic	al register)	XXXX XXXX	20, 117
181h	OPTION_REG	RAPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	14, 117
182h	PCL	Program Co	ounter's (PC) Least Sigr	nificant Byte		_	-	-	0000 0000	19, 117
183h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	13, 117
184h	FSR	Indirect Dat	a Memory A	ddress Poir	nter					xxxx xxxx	20, 117
185h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	33, 117
186h	_	Unimpleme	nted							_	
187h	TRISC	_	-	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	42, 117
188h	—	Unimpleme	nted							—	—
189h	—	Unimpleme	nted							—	—
18Ah	PCLATH	—	_	_	Write Buffe	r for upper 5	bits of Prog	ram Countei		0 0000	19, 117
18Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF ⁽²⁾	0000 000x	15, 117
18Ch	—	Unimpleme	nted							—	—
18Dh	—	Unimpleme	nted							—	—
190h	—	Unimpleme	nted							—	—
191h	—	Unimpleme	nted								_
192h	—	Unimpleme	nted							—	_
193h	—	Unimpleme	nted							—	_
194h	—	Unimpleme	nted							—	—
195h	—	Unimpleme	nted							—	—
196h	—	Unimpleme	nted							—	—
19Ah	—	Unimpleme	nted							—	—
19Bh	—	Unimpleme	nted							—	-
199h	—	Unimpleme	nted							—	
19Ah	_	Unimpleme	nted							_	
19Bh	_	Unimpleme	nted							—	
19Ch		Unimpleme	nted							_	-
19Dh		Unimpleme	nted							_	-
19Eh	_	Unimpleme	mplemented — — —								
19Fh	_	Unimpleme	nted							_	_

PIC16F688 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3 **TABLE 2-4:**

Legend:

Note 1:

- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. MCLR and WDT Reset does not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the 2: mismatched exists.

2.2.2.1 **STATUS Register**

The STATUS register, shown in Register 2-1, contains:

- · the arithmetic status of the ALU
- · the Reset status
- · the bank select bits for data memory (SRAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (see Section 12.0 "Instruction Set Summary").

Note 1: The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

R = Readable	bit W =	Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at F	POR '1' =	Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	IRP: Register Bank S 1 = Bank 2, 3 (100h- 0 = Bank 0, 1 (00h-F	1FFh)	ndirect addressing)	
bit 6-5	RP<1:0>: Register B 00 = Bank 0 (00h-7F 01 = Bank 1 (80h-FF 10 = Bank 2 (100h-1 11 = Bank 3 (180h-1	h) 'n) 7Fh)	d for direct addressing)	
bit 4	TO: Time-out bit 1 = After power-up, C 0 = A WDT time-out of		or SLEEP instruction	
bit 3	PD: Power-down bit 1 = After power-up of 0 = By execution of the			
bit 2	Z: Zero bit 1 = The result of an a 0 = The result of an a	U 1		
bit 1		the 4th low-order bit	W, SUBLW, SUBWF instructions) ⁽¹⁾ t of the result occurred bit of the result	
bit 0	•	the Most Significant	SUBLW, SUBWF instructions) ⁽¹⁾ bit of the result occurred	

For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

PIC16F688

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RA2/INT interrupt
- Timer0
- Weak pull-ups on PORTA

Note:	To achieve a 1:1 prescaler assignment for
	Timer0, assign the prescaler to the WDT
	by setting PSA bit of the OPTION register
	to '1'. See Section 5.1.3 "Software
	Programmable Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0			
bit 7							bit			
										
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 7		A Pull-up Enal								
		ull-ups are disa								
	0 = PORTA pull-ups are enabled by individual PORT latch values									
bit 6		INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RA2/INT pin								
	•	•••	•							
bit 5	0 = Interrupt on falling edge of RA2/INT pin									
DIL D	TOCS: Timer0 Clock Source Select bit 1 = Transition on RA2/T0CKI pin									
		struction cycle		/4)						
bit 4) Source Edge		,						
	1 = Increment on high-to-low transition on RA2/T0CKI pin									
				n RA2/T0CKI pi						
bit 3	PSA: Prescaler Assignment bit									
	1 = Prescaler	is assigned to	the WDT							
	0 = Prescaler	is assigned to	the Timer0 r	nodule						
bit 2-0	PS<2:0>: Prescaler Rate Select bits									
	Bit	Value Timer0	Rate WDT F	late						

it Value	Timer0 Rate	WD1 Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1 : 256	1:128

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, PORTA change and external RA2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-x						
GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: RA2/INT External Interrupt Enable bit 1 = Enables the RA2/INT external interrupt 0 = Disables the RA2/INT external interrupt
bit 3	RAIE: PORTA Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the PORTA change interrupt 0 = Disables the PORTA change interrupt
bit 2	TOIF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: RA2/INT External Interrupt Flag bit 1 = The RA2/INT external interrupt occurred (must be cleared in software) 0 = The RA2/INT external interrupt did not occur
bit 0	RAIF: PORTA Change Interrupt Flag bit 1 = When at least one of the PORTA <5:0> pins changed state (must be cleared in software) 0 = None of the PORTA <5:0> pins have changed state

- Note 1: IOCA register must also be enabled.
 - 2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

PIC16F688

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|--------|
| EEIE | ADIE | RCIE | C2IE | C1IE | OSFIE | TXIE | TMR1IE |
| bit 7 | | | | | | | bit 0 |

Legend:								
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	, read as '0'				
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7		Write Complete Interrupt Er						
		les the EE write complete int oles the EE write complete in						
bit 6	ADIE: A/	D Converter (ADC) Interrupt	Enable bit					
		les the ADC interrupt						
		bles the ADC interrupt						
bit 5		JSART Receive Interrupt Ena						
		les the EUSART receive inte bles the EUSART receive inte	•					
bit 4	C2IE: Comparator 2 Interrupt Enable bit							
		les the Comparator C2 interr						
		bles the Comparator C2 inter						
bit 3	C1IE: Co	mparator 1 Interrupt Enable	bit					
	1 = Enab	les the Comparator C1 interr	upt					
	0 = Disat	oles the Comparator C1 inter	rupt					
bit 2	OSFIE: (Oscillator Fail Interrupt Enable	e bit					
		les the oscillator fail interrupt						
		ples the oscillator fail interrup						
bit 1		ISART Transmit Interrupt Ena						
		les the EUSART transmit inte	•					
	0 = Disables the EUSART transmit interrupt							
bit 0		Timer1 Overflow Interrupt Er						
		les the Timer1 overflow inter bles the Timer1 overflow inter	•					
			lupt					

2.2.2.5 PIR1 Register

The PIR1 register contains the interrupt flag bits, as shown in Register 2-5.

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE bit of the INTCON register.
	User software should ensure the appropri-
	ate interrupt flag bits are clear prior to
	enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

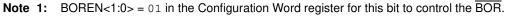
R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R-0	R/W-0
EEIF	ADIF	RCIF	C2IF	C1IF	OSFIF	TXIF	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEIF: EEPROM Write Operation Interrupt Flag bit
	1 = The write operation completed (must be cleared in software)0 = The write operation has not completed or has not been started
bit 6	ADIF: A/D Converter Interrupt Flag bit
	 1 = A/D conversion complete (must be cleared in software) 0 = A/D conversion has not completed or has not been started
bit 5	RCIF: EUSART Receive Interrupt Flag bit
	1 = The EUSART receive buffer is full (cleared by reading RCREG)0 = The EUSART receive buffer is not full
bit 4	C2IF: Comparator C2 Interrupt Flag bit
	 1 = Comparator output (C2OUT bit) has changed (must be cleared in software) 0 = Comparator output (C2OUT bit) has not changed
bit 3	C1IF: Comparator C1 Interrupt Flag bit
	 1 = Comparator output (C1OUT bit) has changed (must be cleared in software) 0 = Comparator output (C1OUT bit) has not changed
bit 2	OSFIF: Oscillator Fail Interrupt Flag bit
	 1 = System oscillator failed, clock input has changed to INTOSC (must be cleared in software) 0 = System clock operating
bit 1	TXIF: EUSART Transmit Interrupt Flag bit
	 1 = The EUSART transmit buffer is empty (cleared by writing to TXREG) 0 = The EUSART transmit buffer is full
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	 1 = The TMR1 register overflowed (must be cleared in software) 0 = The TMR1 register did not overflow

2.2.2.6 PCON Register

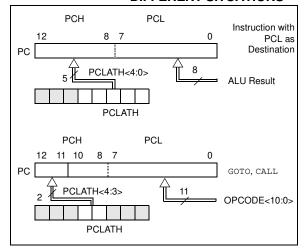
The Power Control (PCON) register (see Register 2-6) contains flag bits to differentiate between a:


- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON register also controls the <u>Ultra</u> Low-Power Wake-up and software enable of the BOR.

REGISTER 2-6: PCON: POWER CONTROL REGISTER

U-0	U-0	R/W-0	R/W-1	U-0	U-0	R/W-0	R/W-x
—	—	ULPWUE	SBOREN ⁽¹⁾	—	—	POR	BOR
bit 7	•	·	· · · · · ·				bit 0


Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-6	Unimpler	nented: Read as '0'		
bit 5	ULPWUE	: Ultra Low-Power Wake-up	Enable bit	
	1 = Ultra I	ow-power wake-up enabled	1	
0 = Ultra low-powe		ow-power wake-up disabled	d	
bit 4 SBOREN: Softw		: Software BOR Enable bit ^{(*}	1)	
	1 = BOR (enabled		
	0 = BOR	disabled		
bit 3-2	Unimpler	nented: Read as '0'		
bit 1	POR: Pov	ver-on Reset Status bit		
	1 = No Po	wer-on Reset occurred		
	0 = A Pov	ver-on Reset occurred (mus	st be set in software after a Po	wer-on Reset occurs)
bit 0	BOR: Bro	wn-out Reset Status bit		
	1 = No Br	own-out Reset occurred		
	0 = A Bro	wn-out Reset occurred (mu	st be set in software after a Br	own-out Reset occurs)

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note AN556, *"Implementing a Table Read"* (DS00556).

2.3.2 STACK

The PIC16F688 family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

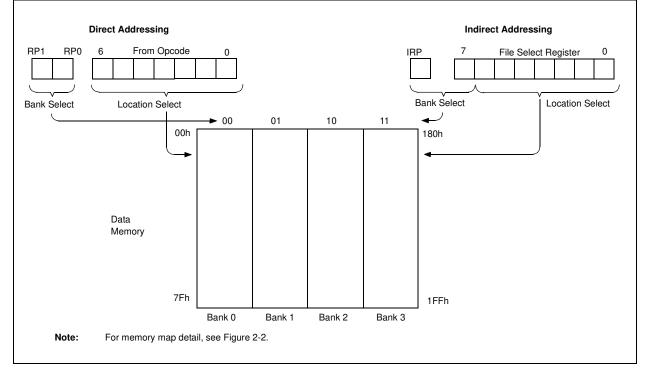
The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no Status bits to indicate Stack Overflow or Stack Underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit of the STATUS register, as shown in Figure 2-4.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1:	INDIRECT ADDRESSING

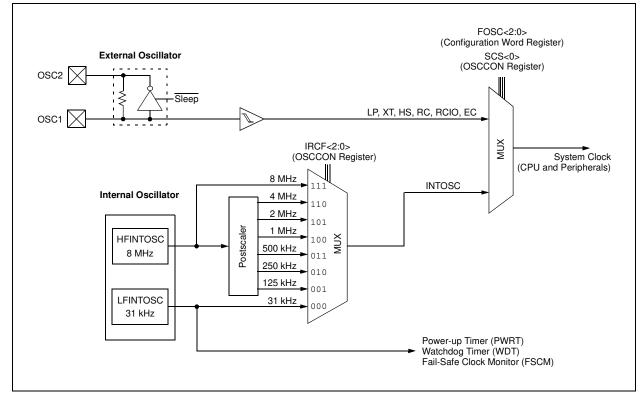
	MOVLW	0x20	; initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	; inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONT	INUE		;yes continue

FIGURE 2-4: DIRECT/INDIRECT ADDRESSING PIC16F688

3.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

3.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 3-1 illustrates a block diagram of the oscillator module.


Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal via software.
- Two-Speed Start-Up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.

The oscillator module can be configured in one of eight clock modes.

- 1. EC External clock with I/O on OSC2/CLKOUT.
- 2. LP 32 kHz Low-Power Crystal mode.
- 3. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode.
- 4. HS High Gain Crystal or Ceramic Resonator mode.
- 5. RC External Resistor-Capacitor (RC) with FOSC/4 output on OSC2/CLKOUT.
- 6. RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT.
- 7. INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN.
- 8. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT.

Clock source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The internal clock can be generated from two internal oscillators. The HFINTOSC is a calibrated highfrequency oscillator. The LFINTOSC is an uncalibrated low-frequency oscillator.

FIGURE 3-1: PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

3.2 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 3-1) controls the system clock and frequency selection options. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Frequency Status bits (HTS, LTS)
- System clock control bits (OSTS, SCS)

REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R/W-1	R/W-1	R/W-0	R-1	R-0	R-0	R/W-0
	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HTS	LTS	SCS
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	IRCF<2:0>: Internal Oscillator Frequency Select bits
	111 = 8 MHz
	110 = 4 MHz (default)
	101 = 2 MHz
	100 = 1 MHz 011 = 500 kHz
	011 = 500 kHz 010 = 250 kHz
	0.01 = 125 kHz
	000 = 31 kHz (LFINTOSC)
bit 3	OSTS: Oscillator Start-up Time-out Status bit ⁽¹⁾
	 1 = Device is running from the external clock defined by FOSC<2:0> of the Configuration Word 0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC)
bit 2	HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz)
	1 = HFINTOSC is stable
	0 = HFINTOSC is not stable
bit 1	LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz)
	1 = LFINTOSC is stable
	0 = LFINTOSC is not stable
bit 0	SCS: System Clock Select bit
	1 = Internal oscillator is used for system clock
	0 = Clock source defined by FOSC<2:0> of the Configuration Word
Note 1.	Bit resets to '0' with Two-Speed Start-up and LP XT or HS selected as the Oscillator mode or Fail-Safe

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

3.3 Clock Source Modes

Clock source modes can be classified as external or internal.

- External Clock modes rely on external circuitry for the clock source. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.
- Internal clock sources are contained internally within the oscillator module. The oscillator module has two internal oscillators: the 8 MHz High-Frequency Internal Oscillator (HFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bit of the OSCCON register. See **Section 3.6** "**Clock Switching**" for additional information.

3.4 External Clock Modes

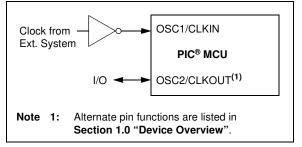
3.4.1 OSCILLATOR START-UP TIMER (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 3-1.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see Section 3.7 "Two-Speed Clock Start-up Mode").

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC HFINTOSC	31 kHz 125 kHz to 8 MHz	Oscillator Warm-Up Delay (Twarm)
Sleep/POR	EC, RC	DC – 20 MHz	2 instruction cycles
LFINTOSC (31 kHz)	EC, RC	DC – 20 MHz	1 cycle of each
Sleep/POR	LP, XT, HS	32 kHz to 20 MHz	1024 Clock Cycles (OST)
LFINTOSC (31 kHz)	HFINTOSC	125 kHz to 8 MHz	1 μs (approx.)

TABLE 3-1: OSCILLATOR DELAY EXAMPLES


3.4.2 EC MODE

The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 3-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 3-2:

EXTERNAL CLOCK (EC) MODE OPERATION

