imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

14/16-Pin, Flash-Based 8-Bit CMOS Microcontrollers

High-Performance RISC CPU

- Only 35 Instructions to Learn:
- All single-cycle instructions except branches
- · Operating Speed:
 - DC 20 MHz clock input
 - DC 200 ns instruction cycle
- 2048 x 14 On-chip Flash Program Memory
- Self-Read/Write Program Memory
- 128 x 8 General Purpose Registers (SRAM)
- Interrupt Capability
- 8-Level Deep Hardware Stack
- · Direct, Indirect and Relative Addressing modes

Microcontroller Features

- · Precision Internal Oscillator:
 - Factory calibrated to ±1%, typical
 - Software selectable frequency: 8 MHz, 4 MHz, 1 MHz or 31 kHz
 - Software tunable
- · Power-Saving Sleep mode • Voltage Range (PIC16F753):
- 2.0V to 5.5V
- Shunt Voltage Regulator (PIC16HV753):
 - 2.0V to user defined
 - 5-volt regulation
- 1 mA to 50 mA shunt range
- Multiplexed Master Clear with Pull-up/Input Pin
- Interrupt-on-Change Pins
- Individually Programmable Weak Pull-ups
- Power-on Reset (POR)
- Power-up Timer (PWRT)
- Brown-out Reset (BOR)
- · Watchdog Timer (WDT) with Internal Oscillator for **Reliable Operation**
- Industrial and Extended Temperature Range
- High Endurance Flash:
 - 100,000 write Flash endurance
 - Flash retention: >40 years
- Programmable Code Protection
- In-Circuit Debug (ICD) via Two Pins
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins

eXtreme Low-Power (XLP) Features

- Sleep Current:
 - 50 nA @ 2.0V, typical
- Operating Current:
 - 11 uA @ 32 kHz, 2.0V, typical
 - 260 uA @ 4 MHz, 2.0V, typical
- Watchdog Timer Current:
- <1 uA @ 2.0V, typical

Peripheral Features

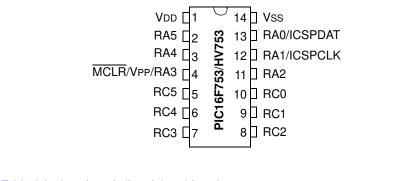
- 11 I/O Pins and one Input-only Pin
- High Current Source/Sink:
 - 50 mA I/O, (two pins)
 - 25 mA I/O, (nine pins)
- Two High-Speed Analog Comparator modules:
 - 50 ns response time -
 - Fixed Voltage Reference (FVR)
 - Programmable on-chip voltage reference via integrated 9-bit DAC
 - Internal/external inputs and outputs (selectable)
 - Built-in Hysteresis (software selectable)
- A/D Converter:
 - 10-bit resolution
 - Eight external channels
 - Two internal reference voltage channels
- · Operational Amplifier:
 - Three terminal operations
 - Internal connections to DAC and FVR
- Digital-to-Analog Converter (DAC):
 - 9-bit resolution
 - Full Range output
 - 4 mV steps @ 2.0V (Limited Range)
- Fixed Voltage Reference (FVR), 1.2V Reference
- · Capture, Compare, PWM (CCP) module:
 - 16-bit Capture, max. resolution = 12.5 ns
 - 16-bit Compare, max. resolution = 200 ns
 - 10-bit PWM, max. frequency = 20 kHz
- Timer0: 8-Bit Timer/Counter with 8-Bit Prescaler
- Enhanced Timer1:
 - 16-bit Timer/Counter with Prescaler
 - External Timer1 Gate (count enable)
 - Four Selectable Clock sources
- Timer2: 8-Bit Timer/Counter with Prescaler - 8-Bit Period Register and Postscaler
- Two Hardware Limit Timers (HLT):
 - 8-bit Timer with Prescaler
 - 8-bit period register and postscaler
 - Asynchronous H/W Reset sources

- Complementary Output Generator (COG):
 - Complementary Waveforms from selectable sources
 - Two I/O (50 mA) for direct MOSFET drive
 - Rising and/or Falling edge dead-band control
 - Phase control, Blanking control
 - Auto-shutdown
 - Slope Compensation Circuit for use with SMPS power supplies

TABLE 1:	PIC16F753/HV753	FAMILY TYPES

Device	Data Sheet Index	Program Memory Flash (words)	Self-Read/Write Flash Memory	Data SRAM (bytes)	I/OS ⁽²⁾	10-bit ADC (ch)	Comparators	Timers (8/16-bit)	ССР	Complementary Output Generator (COG)	DAC	Op Amp	Shunt Regulator	Debug ⁽¹⁾	XLP
PIC12F752	(1)	1K	Y	64	6	4	2	3/1	1	Y	5-bit	Ν	Ν	Н	Y
PIC12HV752	(1)	1K	Y	64	6	4	2	3/1	1	Y	5-bit	Ν	Υ	Н	Y
PIC16F753	(2)	2K	Y	128	12	8	2	3/1	1	Y	9-bit	Y	Ν	I/H	Y
PIC16HV753	(2)	2K	Y	128	12	8	2	3/1	1	Y	9-bit	Y	Υ	I/H	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, Requires Debug Header.


2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS40001576 PIC12F752/HV752 Data Sheet, 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers.
- 2: DS40001709 PIC16F753/HV753 Data Sheet, 14/16-Pin Flash-based, 8-Bit CMOS Microcontrollers.

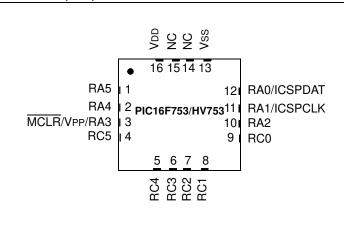

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

FIGURE 1: 14-PIN PDIP, SOIC, TSSOP DIAGRAM

Note: See Table 2 for location of all peripheral functions.

Note: See Table 2 for location of all peripheral functions.

IADLL		•••	• • • • • •	LEOCATION								
0/1	14-Pin PDIP/SOIC/TSSOP	16-Pin QFN	ADC	Reference	Op Amp	Comparator	Timer	ссР	Interrupt	Pull-up	Slope Compensation	Basic
RA0	13	12	AN0	FVROUT DACOUT		C1IN0+	—	—	IOC	Y	—	ICSPDAT
RA1	12	11	AN1	VREF+ FVRIN		C1IN0- C2IN0-	_		IOC	Y	_	ICSPCLK
RA2	11	10	AN2	COG1FLT		C1OUT	TOCKI	_	INT IOC	Y	—	
RA3	4	3					T1G ⁽²⁾	_	IOC	Y	_	MCLR/ VPP
RA4	3	2	AN3				T1G ⁽¹⁾		IOC	Υ	—	CLKOUT
RA5	2	1					T1CKI	—	IOC	Υ	_	CLKIN
RC0	10	9	AN4	_	OPA1IN+	C2IN0+		—	IOC	—	_	_
RC1	9	8	AN5	_	OPA1IN-	C1IN1- C2IN1-	—	—	IOC	_	—	—
RC2	8	7	AN6	—	OPA1OUT	C1 IN2- C2 IN2-	—		IOC	—	SLPCIN	
RC3	7	6	AN7	_	_	C1 IN3- C2 IN3-	—	—	IOC	—	—	—
RC4	6	5	—	COG1OUT1	_	C2OUT	_	—	IOC		—	—
RC5	5	4	_	COG1OUT0	_	_	—	CCP1	IOC		—	_
Vdd	1	16	_		_	_	_	—	-	—	—	Vdd
Vss	14	13	—	_	_	—		—	_	—	—	Vss

TABLE 2:	14/16-PIN ALLOCATION TABLE FOR PIC16F753/HV753
----------	--

Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.

2: Alternate location for peripheral pin function selected by the APFCON register.

Table of Contents

1.0	Device Overview	6
2.0	Memory Organization	9
3.0	Flash Program Memory Self-Read/Self-Write Control	25
4.0	Oscillator Module	34
5.0	I/O Ports	39
6.0	Timer0 Module	54
7.0	Timer1 Module with Gate Control	57
8.0	Timer2 Module	68
9.0	Hardware Limit Timer (HLT) Module	70
10.0	Capture/Compare/PWM Modules	74
11.0	Complementary Output Generator (COG) Module	81
12.0	Analog-to-Digital Converter (ADC) Module	. 104
13.0	Fixed Voltage Reference (FVR)	. 115
14.0	Digital-to-Analog Converter (DAC) Module	. 117
15.0	Comparator Module	
16.0	Operational Amplifier (OPA) Module	. 132
17.0	Slope Compensation (SC) Module	
18.0	Instruction Set Summary	. 140
19.0	Special Features of the CPU	. 149
20.0	Shunt Regulator (PIC16HV753 Only)	. 168
21.0	Development Support	. 169
22.0	Electrical Specifications	. 173
23.0	DC and AC Characteristics Graphs and Charts	
24.0	Packaging Information	. 215
Appe	ndix A: Data Sheet Revision History	. 226
The N	/icrochip Website	. 227
Custo	omer Change Notification Service	. 227
Custo	omer Support	. 227
Produ	uct Identification System	. 228

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

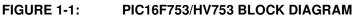
Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.


Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The PIC16F753/HV753 devices are covered by this data sheet. They are available in 14-pin PDIP, SOIC, TSSOP and 16-pin QFN packages.

INT 🖂 Configuration 13 8 PORTA Data Bus Program Counter \times RA0 Flash RA1 ٦ŕ X 2K X 14 RA2 Program × RAM Memory RA3 8-Level Stack X 64 Bytes (13-Bit) File Х RA4 Registers RA5 Program 14 ۶ Y RAM Addr Bus PORTC Addr MUX Instruction Reg RC0 Indirect Direct Addr 7 RC1 8 Addr RC2 FSR Reg RC3 RC4 STATUS Reg RC5 8 3 MUX Ϋ́ ŗ Power-up Instruction Timer Decode & ALU Control Power-on Reset 8 \boxtimes l c Watchdog CLKIN Timing Capture/ W Reg Timer Generation \boxtimes . Compare/ Brown-out PŴM CLKOUT Reset (CCP) ٦Ľ Hardware Shunt Regulator Internal Limit (PIC16HV753 only) Oscillator \boxtimes \bowtie \ge Timer1 \boxtimes Block (HLT) MCLR VDD Vss T1G \boxtimes TICKI \boxtimes Timer1 Timer2 Complementary Timer0 TOCKI Output Generator (COG) וַך Dual Range Analog Comparator DAC Fixed Voltage Reference Slope and Reference Compensator (FVR) \times \times \times \times C1IN0+/C2IN0+ C1IN0-/C2IN0-C1IN1-C2IN1-C2IN1-C1OUT/C2OUT Op Amp

Block Diagrams and pinout descriptions of the devices

are shown in Figure 1-1 and Table 1-1.

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN0+/DACOUT/	RA0	TTL	HP	General purpose I/O with IOC and WPU.
FVROUT/ICSPDAT	AN0	AN	_	A/D Channel 0 input.
	C1IN0+	AN	_	Comparator C1 positive input.
	DACOUT	_	AN	DAC unbuffered Voltage Reference output.
	FVROUT		AN	DAC/FVR buffered Voltage Reference output.
	ICSPDAT	ST	HP	Serial Programming Data I/O.
RA1/AN1/C1IN0-/C2IN0-/	RA1	TTL	CMOS	General purpose I/O with IOC and WPU.
VREF+/FVRIN/ICSPCLK	AN1	AN	_	A/D Channel 1 input.
	C1IN0-	AN	_	Comparator C1 negative input.
	C2IN0-	AN	_	Comparator C2 negative input.
	VREF+	AN	_	A/D Positive Voltage Reference input.
	FVRIN	AN	_	Voltage reference input.
	ICSPCLK	ST	_	Serial Programming Clock.
RA2/AN2/INT/C1OUT/	RA2	ST	HP	General purpose I/O with IOC and WPU.
T0CKI/COG1FLT	AN2	AN	_	A/D Channel 2 input.
	INT	ST		External interrupt.
	C1OUT	_	HP	Comparator C1 output.
	T0CKI	ST		Timer0 clock input.
	COG1FLT	ST		COG auto-shutdown fault input.
RA3 ⁽¹⁾ /T1G ⁽³⁾ /VPP/MCLR ⁽⁴⁾	RA3	TTL	_	General purpose input with WPU.
	T1G	ST	_	Timer1 Gate input.
	VPP	HV		Programming voltage.
	MCLR	ST	_	Master Clear w/internal pull-up.
RA4/AN3/T1G ⁽²⁾ /CLKOUT	RA4	TTL	CMOS	General purpose I/O with IOC and WPU.
	AN3	AN	_	A/D Channel 3 input.
	T1G	ST	_	Timer1 Gate input.
	CLKOUT	_	CMOS	Fosc/4 output.
RA5/T1CKI/COG1OUT0 ⁽³⁾ /	RA5	TTL	CMOS	General purpose I/O with IOC and WPU.
C2IN1-/CLKIN	T1CKI	ST		Timer1 clock input.
	CLKIN	ST	_	External Clock input (EC mode).
RC0/AN4/OPA1IN+/C2IN0+	RC0	TTL	CMOS	General purpose I/O with IOC and WPU.
	AN4	AN		A/D Channel 4 input.
	OPA1IN+	AN	_	Op amp positive input.
	C2IN0+	AN	_	Comparator C2 positive input.
RC1/AN5/OPA1IN-/C1IN1-/	RC1	TTL	CMOS	General purpose I/O with IOC and WPU.
C2IN1-	AN5	AN	_	A/D Channel 5 input.
	OPA1IN-	AN	_	Op amp negative input.
	C1IN1-	AN	_	Comparator C1 negative input.
	C2IN1-	AN	_	Comparator C2 negative input.

TABLE 1-1:	PIC16F753/HV753 PINOUT DESCRIPTION

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

HV = High Voltage

HP = High Power * Alternate pin function.

Note 1: Input only.

3: Alternate pin function via the APFCON register.

4: RA3 pull-up is enabled when pin is configured as MCLR in Configuration Word.

^{2:} Default pin function via the APFCON register.

TABLE 1-1: PIC16F753/HV753 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC2/AN6/SLPCIN/	RC2	TTL	CMOS	General purpose I/O with IOC and WPU.
OPA1OUT/C1IN2-/C2IN2-	AN6	AN	_	A/D Channel 6 input.
	OPA1OUT	AN	HP	Op amp output.
	C1IN2-	AN		Comparator C1 negative input.
	C2IN2-	AN	_	Comparator C2 negative input.
RC3/AN7/C1IN3-/C2IN3-	RC3	TTL	CMOS	General purpose I/O with IOC and WPU.
	AN7	AN	—	A/D Channel 7 input.
	C1IN3-	AN	 Comparator C1 negative input. 	
	C2IN3-	AN	_	Comparator C2 negative input.
RC4/COG1OUT1/C2OUT	RC4	TTL	CMOS	General purpose I/O with IOC and WPU.
	COG1OUT1		CMOS	COG output Channel 1.
	C2OUT	—	HP	Comparator C2 output.
RC5/COG1OUT0/CCP1	RC5	TTL	CMOS	General purpose I/O with IOC and WPU.
	COG1OUT0		CMOS	COG output Channel 0.
	CCP1	—	HP	Capture/Compare/PWM 1.
Vdd	Vdd	Power	-	Positive supply.
Vss	Vss	Power	_	Ground reference.

Legend: AN = Analog input or output

CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

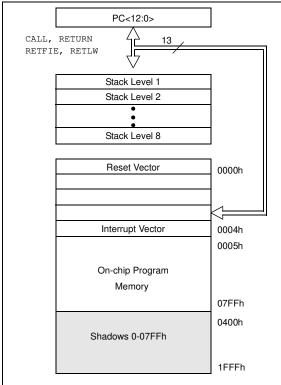
TTL = TTL compatible input HP = High Power

HV = High Voltage

* Alternate pin function. **Note 1:** Input only.

2: Default pin function via the APFCON register.

3: Alternate pin function via the APFCON register.


4: RA3 pull-up is enabled when pin is configured as MCLR in Configuration Word.

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC16F753/HV753 has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 2K x 14 (0000h-07FFh) is physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 2K x 14 space for PIC16F753/HV753. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

2.2 Data Memory Organization

The data memory (see Figure 2-2) is partitioned into four banks, which contain the General Purpose Registers (GPR) and the Special Function Registers are located in the first 32 locations of each bank. Register locations 40h-6Fh in Bank 0 are General Purpose Registers, implemented as static RAM. Register locations 70h-7Fh in Bank 0 are Common RAM and shared as the last 16 addresses in all Banks. All other RAM is unimplemented and returns '0' when read. The RP<1:0> bits of the STATUS register are the bank select bits.

<u>RP1</u> <u>RP0</u>

0	0	\rightarrow Bank 0 is selected
0	1	\rightarrow Bank 1 is selected
1	0	\rightarrow Bank 2 is selected
1	1	\rightarrow Bank 3 is selected

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64 x 8 in the PIC16F753/HV753. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see Section 2.5 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh

10h

11h

12h

13h

14h

15h

16h

17h

18h

19h

1Ah

1Bh

1Ch

1Dh

1Eh

1Fh

20h

6Fh

70h

FIGURE 2-2:

DATA MEMORY MAP OF THE PIC16F753/HV753

BANK 0 INDF

TMR0

PCL

STATUS

FSR

PORTA

PORTC

IOCAF

IOCCF

PCLATH

INTCON

PIR1

PIR2

TMR1L

TMR1H

T1CON

T1GCON

CCPR1L

CCPR1H

CCP1CON

_

_

ADRESL

ADRESH

ADCON0

ADCON1

General

Purpose

Register

80 Bytes

Common RAM

16 Bytes

BANK 1 INDF 80h OPTION_REG 81h PCL 82h STATUS 83h FSR 84h TRISA 85h _ 86h TRISC 87h IOCAP 88h IOCCP 89h PCLATH 8Ah INTCON 8Bh PIE1 8Ch PIE2 8Dh 8Eh SLR OSCCON 8Fh FVR1CON0 90h DAC1CON0 91h DAC1REFL 92h DAC1REFH 93h 94h 95h HLT. OPA1CON0 96h **HLT** 97h 98h _ 99h HLT2 _ HLT2 ____ 9Ah CM2CON0 9Bh CM2CON1 9Ch CM1CON0 9Dh CM1CON1 SLPC 9Eh CMOUT SLPC 9Fh A0h **General Purpose** Register 32 Bytes BFh Unimp C0h Read Unimplemented Read as '0' EFh F0h Common RAM Comm

70h - 7Fh)

17Fh

BANK 2		BANK 3
INDF	100h	INDF
TMR0	101h	OPTION_REG
PCL	102h	PCL
STATUS	103h	STATUS
FSR	104h	FSR
LATA	105h	ANSELA
_	106h	
LATC	107h	ANSELC
IOCAN	108h	APFCON
IOCCN	109h	OSCTUNE
PCLATH	10Ah	PCLATH
INTCON	10Bh	INTCON
WPUA	10Ch	PMCON1
WPUC	10Dh	PMCON2
SLRCONC	10Eh	PMADRL
PCON	10Fh	PMADRH
TMR2	110h	PMDATL
PR2	111h	PMDATH
T2CON	112h	COG1PHR
HLTMR1	113h	COG1PHF
HLTPR1	114h	COG1BKR
HLT1CON0	115h	COG1BKF
HLT1CON1	116h	COG1DBR
HLTMR2	117h	COG1DBF
HLTPR2	118h	COG1CON0
HLT2CON0	119h	COG1CON1
HLT2CON1	11Ah	COG1RIS
	11Bh	COG1RSIM
_	11Ch	COG1FIS
_	11Dh	COG1FSIM
SLPCCON0	11Eh	COG1ASD0
SLPCCON1	11Fh	COG1ASD1
nimplemented Read as '0'	120h	Unimplemented Read as '0'
common RAM (Accesses 70b – 7Eb)	16Fh 170h	Common RAM (Accesses 70b – 7Eb)

BANK 3 ١DF 180h ON_REG 181h CL 182h ATUS 183h SR 184h SELA 185h 186h SELC 187h -CON 188h TUNE 189h LATH 18Ah CON 18Bh CON1 18Ch CON2 18Dh ADRL 18Eh ADRH 18Fh DATL 190h DATH 191h G1PHR 192h G1PHF 193h **G1BKR** 194h G1BKF 195h G1DBR 196h G1DBF 197h 1CON0 198h 1CON1 199h G1RIS 19Ah 1RSIM 19Bh G1FIS 19Ch 1FSIM 19Dh 1ASD0 19Eh 1ASD1 19Fh 1A0h emented d as '0'

7Fh FFh Legend: = Unimplemented data memory locations, read as '0'.

(Accesses

70h - 7Fh)

70h - 7Fh)

1EFh

1F0h

1FFh

			11/30 01								i
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Value on all other Resets
Bank	0										
00h	INDF					F<7:0>				XXXX XXXX	XXXX XXXX
01h	TMR0					0<7:0>				XXXX XXXX	uuuu uuuu
02h	PCL				PCL	_<7:0>				0000 0000	0000 0000
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR				FSF	R<7:0>				XXXX XXXX	uuuu uuuu
05h	PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
06h	—				Unimp	lemented				—	_
07h	PORTC	—	—	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu
08h	IOCAF	—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
09h	IOCCF	—	—	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	00 0000	00 0000
0Ah	PCLATH	—	—	_			PCLATH<4:0:	>		0 0000	0 0000
0Bh	INTCON	GIE	PEIE	T0IE	INTE	IOCIE	T0IF	INTF	IOCIF	0000 0000	0000 0000
0Ch	PIR1	TMR1GIF	ADIF	_	_	HLTMR2IF	HLTMR1IF	TMR2IF	TMR1IF	000000	000000
0Dh	PIR2	—	—	C2IF	C1IF	_	COG1IF	_	CCP1IF	00 -0-0	00 -0-0
0Eh	—		Unimplemented								—
0Fh	TMR1L				TMR	1L<7:0>				XXXX XXXX	uuuu uuuu
10h	TMR1H				TMR1	1H<7:0>				XXXX XXXX	uuuu uuuu
11h	T1CON	TMR1C	S<1:0>	T1CKP	'S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	0000 00-0
12h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	0000 0x00	0000 0x00
13h	CCPR1L				CCPR	{1L<7:0>				XXXX XXXX	uuuu uuuu
14h	CCPR1H				CCPR	1H<7:0>				xxxx xxxx	uuuu uuuu
15h	CCP1CON		—	DC1E	8<1:0>		CCP1N	/<3:0>		00 0000	00 0000
16h	—		Unimplemented								—
17h	—				Unimp	lemented				_	_
18h	—		Unimplemented —								—
19h	—		Unimplemented —								
1Ah	_		Unimplemented —								_
1Bh	_		Unimplemented —							—	—
1Ch	ADRESL		-			d result or eigl		-		XXXX XXXX	uuuu uuuu
1Dh	ADRESH	Most	Significant e	ight bits of th	e left shifted	A/D result or	two bits of the	right shifted	result	XXXX XXXX	uuuu uuuu
1Eh	ADCON0	ADFM	—		CHS	6<3:0>		GO/DONE	ADON	0-00 0000	0-00 0000
1Fh	ADCON1			ADCS<2:0>		-	—	—	ADPREF1	-0000	-0000

TABLE 2-1: PIC16F753/HV753 SPECIAL REGISTERS SUMMARY BANK 0

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition shaded = unimplemented.

TABLE 2-2:	PIC16F753/HV753 SPECIAL REGISTERS SUMMARY BANK 1
-------------------	--

											_
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Values on all other Resets
Banl	c1										
80h	INDF				IND	F<7:0>				XXXX XXXX	uuuu uuuu
81h	OPTION_REG	RAPU	INTEDG	T0CS	TOSE	PSA		PS<2:0>		1111 1111	1111 1111
82h	PCL				PC	L<7:0>				0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR					FSR	1			XXXX XXXX	uuuu uuuu
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
86h	—				Unimp	lemented			•	_	—
87h	TRISC	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
88h	IOCAP	_	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
89h	IOCCP	—	_	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	00 0000	00 0000
8Ah	PCLATH	_	_	_		P	CLATH<4:0>		-	0 0000	0 0000
8Bh	INTCON	GIE	PEIE	T0IE	INTE	IOCIE	T0IF	INTF	IOCIF	0000 0000	0000 0000
8Ch	PIE1	TMR1GIE	ADIE		—	HLTMR2IE	HLTMR1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	PIE2	—	—	C2IE	C1IE	—	COG1IE	—	CCP1IE	00 -0-0	00 -0-0
8Eh	—					lemented	1		1	—	—
8Fh	OSCCON	—	_	IRCI	=<1:0>	_	HTS	LTS	_	01 -00-	uu -uu-
90h	FVR1CON0	FVREN	FVRRDY	FVROE	FVRBUFSS1	FVRBUFSS0	—		FVRBUFEN	0000 00	0000 00
91h	DAC1CON0	DACEN	DACFM	DACOE	—	DACPSS1	DACPSS0	_	—	000- 00	000- 00
92h	DAC1REFL		Least Signif	ficant bit of the	e left shifted resu	Ilt or eight bits of	f the right shift	ed DAC setti	ng	0000 0000	0000 0000
93h	DAC1REFH	١	Most Significa	ant eight bits o	f the left shifted	DAC setting or f	irst bit of the r	ight shifted re	esult	0000 0000	0000 0000
94h	_				Unimp	lemented				—	—
95h	_					lemented				—	—
96h	OPA1CON	OPA1EN	—	_	OPA1UGM	OPA1NC	H<1:0>	OPA1F	PCH<1:0>	00 0000	00 0000
97h	_				Unimp	lemented				—	—
98h	_				Unimp	lemented				—	—
99h	—					lemented				—	—
9Ah	—					lemented	1		1	—	—
9Bh	CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2ZLF	C2SP	C2HYS	C2SYNC	0000 0100	0000 0100
9Ch	CM2CON1	C2INTP	C2INTN		C2PCH<2:0>	Γ		C2NCH<2:0	1	0000 0000	0000 0000
9Dh	CM1CON0	C1ON	C1OUT	C10E	C1POL	C1ZLF	C1SP	C1HYS	C1SYNC	0000 0100	0000 0100
9Eh	CM1CON1	C1INTP	C1INTN		C1PCH<2:0>			C1NCH<2:0	1	0000 0000	0000 0000
9Fh	CMOUT	—	—	—	—	—	—	MCOUT2	MCOUT1	00	00

Legend: —= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition shaded = unimplemented.

TABLE 2-3:	PIC16F753/HV753 SPECIAL REGISTERS SUMMARY BANK 2

.

IADI	LE 2-3: PIC	107/53/1	10/03 38			SOWIWA		n 2			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Value on all other Resets
Ban	k 2										
100h	INDF				INDF	<7:0>				XXXX XXXX	XXXX XXXX
101h	TMR0				TMR)<7:0>				XXXX XXXX	uuuu uuuu
102h	PCL				PCL	<7:0>				0000 0000	0000 0000
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
104h	FSR				FSR	<7:0>				XXXX XXXX	uuuu uuuu
105h	LATA	—	_	LATA5	LATA4	—	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
106h	—				Unimple	emented				_	_
107h	LATC	_	_	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xx xxxx	uu uuuu
108h	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
109h	IOCCN	—	_	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	00 0000	00 0000
10Ah	PCLATH	—	_	—		F	PCLATH<4:0:	>		0 0000	0 0000
10Bh	INTCON	GIE	PEIE	T0IE	INTE	IOCIE	T0IF	INTF	IOCIF	0000 0000	0000 0000
10Ch	WPUA	—	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
10Dh	WPUC	_		WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	11 1111	11 1111
10Eh	SLRCONC	_		SLRC5	SLRC4	—	—	_	_	00	00
10Fh	PCON	—	-	_	_	—	—	POR	BOR	qq	uu
110h	TMR2				TMR2	2<7:0>				0000 0000	0000 0000
111h	PR2				PR2-	<7:0>				1111 1111	1111 1111
112h	T2CON	—		T2OUTF	PS<3:0>		TMR2ON	T2CKF	PS<1:0>	-000 0000	-000 0000
113h	HLTMR1		F	Iolding Registe	er for the 8-bit	Hardware Lim	nit Timer1 Co	unt		0000 0000	0000 0000
114h	HLTPR1			HL	TMR1 Module	e Period Regis	ter			1111 1111	1111 1111
115h	HLT1CON0	—		H1OUT	PS<3:0>		H1ON	H1CKF	PS<1:0>	-000 0000	-000 0000
116h	HLT1CON1	H1FES	H1RES	_		H1ERS<2:0>		H1FEREN	H1REREN	11-0 0000	11-0 0000
117h	HLTMR2		F	Iolding Registe	er for the 8-bit	Hardware Lim	nit Timer2 Co	unt		0000 0000	0000 0000
118h	HLTPR2			HL	TMR2 Module	e Period Regis	ter			1111 1111	1111 1111
119h	HLT2CON0	_		H2OUTF	PS<3:0>		H2ON	H2CKF	PS<1:0>	-000 0000	-000 0000
11Ah	HLT2CON1	H2FES	H2RES	_		H2ERS<2:0>		H2FEREN	H2REREN	11-0 0000	11-0 0000
11Bh	—				Unimple	emented				—	—
11Ch	_				Unimple	emented				—	—
11Dh	—				Unimple	emented				_	_
11Eh	SLPCCON0	SC1EN	_	—	SC1POL	SC1TS	S<1:0>	—	SC1INS	0-00 00-0	0-00 00-0
11Fh	SLPCCON1		_	_	SC1RNG		SC1ISI	ET<3:0>		0 0000	0 0000
Logor	d: = Unimple	manted least	and read as to	, unahana	مما سمادهم		depende en	aanditian aha	ملية مناسب المحام	mantad	

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition shaded = unimplemented.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Values on all other Resets
Bank	Bank 3										
180h	INDF				IND)F<7:0>				XXXX XXXX	uuuu uuuu
181h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA		PS<2:0>		1111 1111	1111 1111
182h	PCL			•	PC	L<7:0>				0000 0000	0000 0000
183h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
184h	FSR				FS	R<7:0>	•			XXXX XXXX	uuuu uuuu
185h	ANSELA	-	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	1 -111	1 -111
186h	_				Unimp	plemented	•			_	—
187h	ANSELC		_	_	—	ANSC3	ANSC2	ANSC1	ANSC0	0000	0000
188h	APFCON	_	_	_	T1GSEL	_	—	—	—	0	0
189h	OSCTUNE	_	_	_			TUN<4:0>			0 0000	0 0000
18Ah	PCLATH	_		_		Р	CLATH<4:0>			0 0000	0 0000
18Bh	INTCON	GIE	PEIE	T0IE	INTE	IOCIE	T0IF	INTF	IOCIF	0000 0000	0000 0000
18Ch	PMCON1	_	-	—	—	_	WREN	WR	RD	000	000
18Dh	PMCON2		Program Memory Control Register 2								
18Eh	PMADRL				PMA	DRL<7:0>				0000 0000	0000 0000
18Fh	PMADRH	-	_	—	—	_	—	PMADF	RH<1:0>	00	00
190h	PMDATL				PMD	ATL<7:0>				0000 0000	0000 0000
191h	PMDATH	_	-			PMDATH				00 0000	00 0000
192h	COG1PHR	_	_	—	—		G1PHF			xxxx	uuuu
193h	COG1PHF	_	_	_	—		G1PHF			xxxx	uuuu
194h	COG1BKR	_	—	_	—		G1BKF			xxxx	uuuu
195h	COG1BKF	_	—	—			G1BKF			xxxx	uuuu
196h	COG1DBR	_	_	_	—		G1DBF			xxxx	uuuu
197h	COG1DBF	-	-	-	—	0.000	G1DBF	<3:0>	0.045	xxxx	uuuu
198h	COG1CON0	G1EN	G10E1	G1OE0	G1POL1	G1POL0	G1LD	—	G1MD	0000 00-0	0000 00-0
199h	COG1CON1	G1RDBTS	G1FDBTS	_	—	_	—	G1CS	6<1:0>	0000	0000
19Ah	COG1RIS	_	G1RIHLT2	G1RIHLT1	G1RIT2M	G1RIFLT	G1RICCP1	G1RIC2	G1RIC1	0000 0000	0000 0000
19Bh	COG1RSIM		G1RMHLT2	G1RMHLT1	G1RMT2M	G1RMFLT	G1RMCCP1	G1RMC2	G1RMC1	0000 0000	0000 0000
19Ch	COG1FIS	_	G1FIHLT2	G1FIHLT1	G1FIT2M	G1FIFLT	G1FICCP1	G1FIC2	G1FIC1	0000 0000	0000 0000
19Dh	COG1FSIM	—	G1FMHLT2	G1FMHLT1	G1FMT2M	G1FMFLT	G1FMCCP1	G1FMC2	G1FMC1	0000 0000	0000 0000
19Eh	COG1ASD0	C1ASDE	C1ARSEN	G1AS	D1L<1:0>	G1ASD0	L<1:0>	_	_	0000 00	0000 00
19Fh	COG1ASD1	_		—	G1ASDSHLT2	G1ASDSHLT1	G1ASDSC2	G1ASDSC1	G1ASDSFLT	0000 0000	0000 0000

TABLE 2-4:PIC16F753/HV753 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition shaded = unimplemented

2.3 Global SFRs

2.3.1 STATUS REGISTER

The STATUS register, shown in Register 2-1, contains:

- the arithmetic status of the ALU
- the Reset status
- the bank select bits for data memory (RAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not

writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as `000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see Section 18.0 "Instruction Set Summary".

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:					
R = Readable	e bit W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		
bit 7	IRP: Register Bank Select bit (used for in 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh)	ndirect addressing)			
bit 6	RP1: Register Bank Select bit (used for 0 00 = Bank 0 (00h-7Fh) 01 = Bank 1 (80h-FFh) 10 = Bank 2 (100h-17Fh) 11 = Bank 3 (180h-1FFh)	direct addressing)			
bit 5	RP0: Register Bank Select bit (used for a 1 = Bank 1 (80h-FFh) 0 = Bank 0 (00h-7Fh)	direct addressing)			
bit 4	TO: Time-Out bit 1 = After power-up, CLRWDT instruction of 0 = A WDT time-out occurred	or SLEEP instruction			
bit 3	PD: Power-Down bit 1 = After power-up or by the CLRWDT ins 0 = By execution of the SLEEP instructio				
bit 2	Z: Zero bit 1 = The result of an arithmetic or logic of 0 = The result of an arithmetic or logic of	peration is zero			
bit 1	DC: Digit Carry/Borrow bit ⁽²⁾ (ADDWF, AD 1 = A carry-out from the 4th low-order bit 0 = No carry-out from the 4th low-order bit	of the result occurred	, For $\overline{\operatorname{Borrow}}$, the polarity is reversed.		
bit 0	C: Carry/Borrow bit ⁽²⁾ (ADDWF, ADDLW, 1 = A carry-out from the Most Significant 0 = No carry-out from the Most Significant	bit of the result occurred			
ir	The C and DC bits operate as a Borrow and Dinstructions for examples.				
2: F	For Borrow, the polarity is reversed. A subtract	tion is executed by adding the two	's complement of the second operar		

2: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

2.3.2 OPTION REGISTER

The OPTION register is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RA2/INT interrupt
- Timer0
- Weak pull-ups on PORTA

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 RAPU INTEDG TOCS T0SE PSA PS<2:0> bit 7 bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	1 = PORTA pull-ups	 RAPU: PORTA Pull-up Enable bit 1 = PORTA pull-ups are disabled 0 = PORTA pull-ups are enabled by individual PORT latch value 							
bit 6	1 = Interrupt on risin	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin							
bit 5	TOCS: Timer0 Clock 1 = Transition on T0 0 = Internal instruction	CKI pin							
bit 4	TOSE: Timer0 Source 1 = Increment on hig 0 = Increment on low	gh-to-low tran	sition on TO	•					
bit 3	PSA: Prescaler Ass 1 = Prescaler is ass 0 = Prescaler is ass	igned to the V		le					
bit 2-0	PS<2:0>: Prescaler	Rate Select b	oits						
	BIT VALUE	TIMER0 RATE	WDT RATE						
	000 001 010 011	1 : 2 1 : 4 1 : 8 1 : 16	1 : 1 1 : 2 1 : 4 1 : 8						
	100	1:32	1:16						

101

110 111 1:64

1:128

1:256

1:32

1:64

1:128

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit to '1' of the OPTION register. See Section 6.1.3 "Software Programmable Prescaler".

2.3.3 INTCON REGISTER

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, IOCIE change and external RA2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

Logondu							
bit 7							bit 0
GIE	PEIE	T0IE	INTE	IOCIE	T0IF	INTF	IOCIF
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: RA2/INT External Interrupt Enable bit 1 = Enables the RA2/INT external interrupt 0 = Disables the RA2/INT external interrupt
bit 3	IOCIE: Interrupt-on-Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the IOC change interrupt 0 = Disables the IOC change interrupt
bit 2	TOIF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: RA2/INT External Interrupt Flag bit 1 = The RA2/INT external interrupt occurred (must be cleared in software) 0 = The RA2/INT external interrupt did not occur
bit 0	 IOCIF: Interrupt-on-Change Interrupt Flag bit 1 = An IOC pin has changed state and generated an interrupt 0 = No pin interrupts have been generated
Note 1.	IOC register must also be enabled

Note 1: IOC register must also be enabled.

2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

2.3.4 PIE1 REGISTER

The PIE1 register contains the Peripheral Interrupt Enable bits, as shown in Register 2-4.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1GIE	ADIE	—	_	HLTMR2IE	HLTMR1IE	TMR2IE	TMR1IE
bit 7						-	bit 0
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	TMR1GIE: AI	DC Interrupt Ena	able bit				
		he TMR1 gate i he TMR1 gate i					
bit 6	ADIE: ADC Ir	nterrupt Enable	bit				
		he ADC interrup he ADC interru					
bit 5-4		ted: Read as '0					
bit 3	1 = Enables t	ILT2 Interrupt E he HLT2 interru the HLT2 interru					
bit 2	HLTMR1IE: ⊦	ILT1 Interrupt E	nable bit				
	1 = Enables the HLT1 interrupt 0 = Disables the HLT1 interrupt						
bit 1	TMR2IE: Timer2 Interrupt Enable bit						
		1 = Enables the Timer2 interrupt0 = Disables the Timer2 interrupt					
bit 0		er1 Interrupt En he Timer1 interr					

2.3.5 PIE2 REGISTER

The PIE2 register contains the Peripheral Interrupt Enable bits, as shown in Register 2-5.

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt.

REGISTER 2-	5: PIE2: I	PERIPHERA	L INTERRU	PT ENABLE	REGISTER 1		
U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
—	—	C2IE	C1IE		COG1IE	_	CCP1IE
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	C2IE: Comparator 2 Interrupt Enable bit						
		he Comparato	•				
		he Comparato	•				
bit 4	C1IE: Compa	rator 1 Interrup	ot Enable bit				
		he Comparato					
		he Comparato					
bit 3	-	ted: Read as '					
bit 2	COG1IE: COG 1 Interrupt Flag bit						
	1 = COG1 inte	errupt enabled					
	0 = COG1 inte	errupt disabled	l				
bit 1	Unimplemen	nimplemented: Read as '0'					
bit 0	CCP1IE: CCP1 Interrupt Enable bit						
	1 = Enables t	he CCP1 inter	rupt				
	0 = Disables t	the CCP1 inter	rupt				

2.3.6 PIR1 REGISTER

The PIR1 register contains the Peripheral Interrupt flag bits, as shown in Register 2-6.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-6: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1GIF	ADIF	—		HLTMR2IF	HLTMR1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	TMR1GIF: TMR1 Gate Interrupt Flag bit
	1 = Timer1 gate interrupt is pending
	0 = Timer1 gate interrupt is not pending
bit 6	ADIF: ADC Interrupt Flag bit
	1 = ADC conversion complete
	0 = ADC conversion has not completed or has not been started
bit 5-4	Unimplemented: Read as '0'
bit 3	HLTMR2IF: HLT2 to HLTPR2 Match Interrupt Flag bit
	1 = HLT2 to HLTPR2 match occurred (must be cleared in software)
	0 = HLT2 to HLTPR2 match did not occur
bit 2	HLTMR1IF: HLT1 to HLTPR1 Match Interrupt Flag bit
	1 = HLT1 to HLTPR1 match occurred (must be cleared in software)
	0 = HLT1 to HLTPR1 match did not occur
bit 1	TMR2IF: Timer2 to PR2 Match Interrupt Flag bit
	1 = Timer2 to PR2 match occurred (must be cleared in software)
	0 = Timer2 to PR2 match did not occur
bit 0	TMR1IF: Timer1 Interrupt Flag bit
	1 = Timer1 rolled over (must be cleared in software)
	0 = Timer1 has not rolled over

2.3.7 PIR2 REGISTER

The PIR2 register contains the Peripheral Interrupt flag bits, as shown in Register 2-7.

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit CIE of the INTCON register
	Enable bit, GIE of the INTCON register. User software should ensure the
	appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 1

U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
—	—	C2IF	C1IF	—	COG1IF	—	CCP1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5	C2IF: Comparator 1 Interrupt Flag bit
	1 = Comparator output (C2OUT bit) has changed (must be cleared in software)
	0 = Comparator output (C2OUT bit) has not changed
bit 4	C1IF: Comparator 1 Interrupt Flag bit
	1 = Comparator output (C1OUT bit) has changed (must be cleared in software)
	0 = Comparator output (C1OUT bit) has not changed
bit 3	Unimplemented: Read as '0'
bit 2	COG1IF: COG 1 Interrupt Flag bit
	1 = COG1 has generated an auto-shutdown interrupt
	0 = COG1 has NOT generated an auto-shutdown interrupt
bit 1	Unimplemented: Read as '0'
bit 0	CCP1IF: ECCP Interrupt Flag bit
	Capture Mode
	1 = A TMR1 register capture occurred (must be cleared in software)
	0 = No TMR1 register capture occurred
	Compare Mode
	 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred
	PWM mode
	Unused in this mode

2.3.8 PCON REGISTER

The Power Control (PCON) register (see Table 19-2) contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

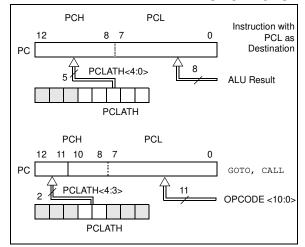
The PCON register also controls the software enable of the $\overline{\mbox{BOR}}.$

The PCON register bits are shown in Register 2-8.

REGISTER 2-8: PCON: POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-q/u	R/W-q/u
—	_	_	_	_	—	POR	BOR
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = unchanged


bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	A No Duration and Department

1 = No Brown-out Reset occurred
 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

2.4 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper five bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register.

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower eight bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

For more information refer to Application Note *AN556, Implementing a Table Read* (DS00556).

2.4.2 STACK

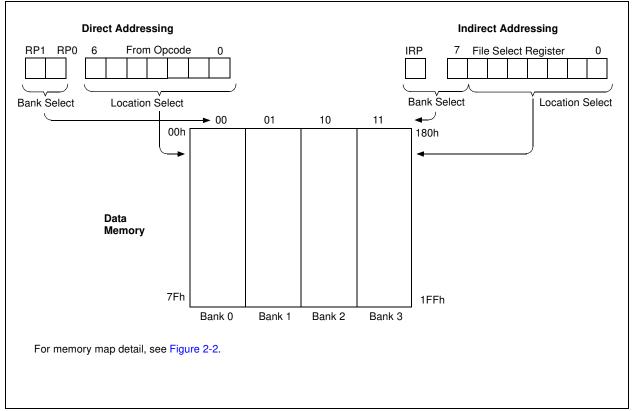
The PIC16F753/HV753 Family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no Status bits to indicate Stack Overflow or Stack Underflow conditions.2: There are no instructions/mnemonics
2. There are no instructions/macmonics
2. There are no instructions minerionics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to ar interrupt address.

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 2-4.

A simple program to clear RAM location 40h-7Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT	ADDRESSING
-----------------------	------------

	MOVLW	0x40	; initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	; inc pointer
	BTFSS	FSR,7	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			;yes continue

3.0 FLASH PROGRAM MEMORY SELF-READ/SELF-WRITE CONTROL

The Flash program memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers (see Registers 3-1 to 3-5). There are six SFRs used to read and write this memory:

- PMCON1
- PMCON2
- PMDATL
- PMDATH
- PMADRL
- PMADRH

When interfacing the program memory block, the PMDATL and PMDATH registers form a two-byte word which holds the 14-bit data for read/write, and the PMADRL and PMADRH registers form a two-byte word which holds the 10-bit address of the Flash location being accessed. These devices have 1K words of program Flash with an address range from 0000h to 03FFh.

The program memory allows a single-word read and a four-word write. A four-word write automatically erases the row of the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

When the device is code-protected, the CPU may continue to read and write the Flash program memory.

Depending on the settings of the Flash Program Memory Enable (WRT<1:0>) bits, the device may or may not be able to write certain blocks of the program memory; however, reads of the program memory are allowed.

When the Flash program memory Code Protection $\overline{(CP)}$ bit in the Configuration Word register is enabled, the program memory is code-protected, and the device programmer (ICSPTM) cannot access data or program memory.

3.1 PMADRH and PMADRL Registers

The PMADRH and PMADRL registers can address up to a maximum of 1K words of program memory.

When selecting a program address value, the Most Significant Byte (MSB) of the address is written to the PMADRH register and the Least Significant Byte (LSB) is written to the PMADRL register.

3.2 PMCON1 and PMCON2 Registers

PMCON1 is the control register for the data program memory accesses.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear.

PMCON2 is not a physical register. Reading PMCON2 will read all '0's. The PMCON2 register is used exclusively in the Flash memory write sequence.